

#### Dnyanopasak Shikshan Mandal's

#### College of Arts, Commerce and Science, Parbhani

#### **Department of Electronics**

Courses offered at UG level (B. Sc.)

Program: B. Sc. with Electronics as 1 of the 3 optionals

#### **Program Outcomes:**

The learners can be employed as Electronic Instrument operator, Electronic Circuit Designer, Electronic Consultant, can be an Entrepreneur, or may pursue higher studies in Electronics to work as a Teacher at College or University level. Knowledge of fundamental Electronic Science, basic electronic components, semiconductor devices, basic digital technologies, and communication technologies. Application of knowledge, problem analysis, investigation of problems, use of modern tools and instruments, Environmental awareness, ethics, individual and team work, communication, and lifelong learning.

#### **Program specific Outcomes:**

- In-depth knowledge of basic concepts of electronic science, basic electronic components
- Confidence in identifying various components for specific work/circuit/project etc. and in handling of laboratory instruments for measurements. Analytical abilities.
- Understanding semiconductor devices' characteristics, dataconverters, data processors, and use of analogue and Digital ICs.
- Understanding working of frequently required circuits in electronics industry; such as amplifiers, oscillators, multivibrators, microprocessors, microcontrolers and their interfacing.
- Fundamentals of Communication Electronics and Power Electronics.

• Confidence building through practical skills with lot of hands on practice.

**Course Title: I-Electronic Components & Circuit Analysis Course Code: CCEI-A** 

| Course Units             | Course Outcome                                                                                                                                                    |  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| I: Passive Components    | Identification, construction, characteristics and types of resistors, capacitors, inductors, and transformer                                                      |  |
| II: Circuit Analysis-I   | Knowledge and application of Kirchhoff's laws, current and voltage formulae for series and parallel circuits, and trouble shooting                                |  |
| III: Circuit Analysis-II | Understanding of voltage source, current source application of Supper position theorem. Thevenin's theorem, Norton's theorem, and maximum power transfer theorem. |  |
| IV: A.C. Fundamentals    | Cycle, time period frequency, phase, and forms of ac quantity. R-L-C series circuit, resonance, bandwidth and Q factor                                            |  |

### **Course Title: III- Semiconductor Devices and Instrumentation Course Code: CCEII-A**

| Course Units                           | Course Outcome                                                                              |  |
|----------------------------------------|---------------------------------------------------------------------------------------------|--|
| I: Semiconductor Diodes                | Construction, working and V-I characteristics of various semiconductor diodes               |  |
| II: Transistors                        | Construction and working of bipolar transistors, JFET, characteristics and parameters       |  |
| III: Rectifiers and Voltage Regulators | Knowledge of rectifiers, regulator power supply, load regulation and line regulation        |  |
| IV: CRO and Multi-meter                | Understanding of working principles of analogue and multi-meter, CRO and their applications |  |

# **Course Title: V-Practical Paper P-V (based on Papers I, II, III, IV)**

**Course Code: CCEPI** 

#### Group II:

- 1. Study of basic gates (verification of truth table) using ICs.
- 2. Construction of basic gates using NAND gates.
- 3. Construction and study of half adder using NAND gates.
- 4. Construction and study of full adder using NAND gates.
- 5. Implementation of Boolean expression from the given truth table using K-map.
- 6. Verification of De Morgan's First theorem.
- 7. Verification of De Morgan's Second theorem.
- 8. Construction and study of JK, T-type and D-type flip-flops using IC 7476.
- 9. Study of decade counter using IC 7490.
- 10.Construction and study of Serial in Serial out shift register using IC 7495.
- 11.Mod-16 asynchronous counter using IC 7493.
- 12. 4-bit binary to Gray converter using IC 7486.

Identification of components, Draw circuits, construct circuit, record input and output voltages, draw graphs and perform calculations wherever necessary, write results and conclusions

### **Course Title: VII-Fundamentals of Microprocessors**

| Course Units                                     | Course Outcome                                                                                                        |  |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|
| I: Introduction to Microprocessor 8085           | Knowledge of features, functional pin diagram, internal blocks and their functions, and semiconductor memories        |  |
| II: Instruction set of INTEL 8085                | Understanding of complete instruction set of 8085, their format and addressing modes                                  |  |
| III: Programming and Interrupts of 8085          | Understanding of instructions through ALP examples, ALP programming skill, hardware and software interrupts with 8085 |  |
| IV: Introduction to Microprocessor INTEL<br>8086 | Functional pin diagram, internal block diagram and features of 8086                                                   |  |

**Course Code: CCEIII-B** 

**Course Code: CCEIV-B** 

### **Course Title: IX-Microprocessor Interfacing**

| Course Units                     | Course Outcome                                                                                                                                               |  |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| I: Basic Interfacing Concepts    | Understanding of memory mapped I/O scheme, I/O mapped I/O scheme, data transfer scheme                                                                       |  |
| II: Interfacing Chips            | Knowledge of functional block diagram, operating modes and application of interfacing ICs 8253, 8255, 8259 and 8257                                          |  |
| III: Microprocessor Applications | Understanding of interfacing of I/O devices using decoder 74138, buffer 74244 and latch 74373 chips. Interfacing of switches, LED and relays and programming |  |
| IV: Data Converters              | Knowledge of interfacing ADC 0808 DAC 0808 with microprocessor 8085                                                                                          |  |

**Skill Enhancement Course: SEC-II** 

**Course Title: Electrical Circuits and Network Skills Course Code: CCEPIII** 

| Course Units                    | Course Outcome                                                                                                                                                                                            |  |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| I: Basic Electricity Principles | Soldering skills, practical verification of Ohm's law, troubleshooting given circuit, series and parallel combination of components, designing of low voltage power supply, handling of digital LCR meter |  |
| II: Solid state Devices         | Understanding of characteristics of diodes, rectifiers, recording response of L, C to DC/AC, determine Op-Amp parameters                                                                                  |  |

<u>Course Title</u>: XIII-Power Electronics – I <u>Course Code</u>: DECE-I

| Course Units                                       | Course Outcome                                                                                                               |  |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|
| I: Thyristor: Principles and characteristics       | In-depth knowledge of SCR construction, V-I characteristics, gate characteristic and turn ON methods                         |  |
| II: Power Semiconductor Devices                    | Understanding DIAC, TRIAC, Power MOSFET and IGBT characteristics. Characteristics of SUS, SBS, SCS and LASCR                 |  |
| III: Gate Triggering Circuits                      | Illustrate gate trigger circuit, use of pulse transformer, R, R-C, full wave trigger circuit,                                |  |
| IV: Series and parallel operation of<br>Thyristors | Understanding need and connection of thyristors in series and parallel, problems associated and solution to such connections |  |

## **Course Title: XV-Power Electronics - II**

| Course Units                   | Course Outcome                                                                                                                                          |  |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| I: Phase controlled Convertors | Construct full wave controlled rectifier with R, R and L, RL with freewheeling diode. Illustrate Bridge configuration, half controlled bridge rectifier |  |
| II: Thyristor Control Circuits | Drawing and understanding of various control circuits using DIAC, TRIAC, LDR used in industry and domestic appliances                                   |  |
| III: Choppers                  | Illustrate step down and step up choppers, power control strategies in choppers                                                                         |  |
| IV: Inverters                  | Understanding of series and parallel invertors                                                                                                          |  |

**Course Code: DECE-II** 

# **Course Title: Practical Paper P-XVI (based on Papers XII and XIV)**

**Course Code: DECEPI** 

| Course Experiments                                                                                         | Course Outcome                                                                          |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Study of Class–C Amplitude Modulation and<br>Measurement of Efficiency, Percentage                         | Identification of components, Draw circuits, construct circuit, record input and output |
| 1. Modulation Index                                                                                        | voltages, draw graphs and perform calculations                                          |
| 2. Study of Linear Diode Detector and Measurement of Detection Efficiency                                  | wherever necessary, write results and conclusions                                       |
| 3. Study of Frequency Response of Two Stage IF Amplifier                                                   |                                                                                         |
| 4. Study of Frequency Response of Audio Amplifier.                                                         |                                                                                         |
| 5. Study of Class B Push–Pull Amplifier using<br>Complimentary Symmetry and Determination<br>of Efficiency |                                                                                         |
| 6. Study of RF Mixer using BF 194 Transistor                                                               |                                                                                         |
| 7. Study of FM Modulation using IC 566                                                                     |                                                                                         |
| 8. Study of FM Demodulator.                                                                                |                                                                                         |
| 9. Study of Pulse Amplitude Modulation                                                                     |                                                                                         |
| 10. Study of Pulse Position Modulation                                                                     |                                                                                         |
| 11. Study of Pulse Width Modulation                                                                        |                                                                                         |
| 12. Study of Pulse Code Modulation                                                                         |                                                                                         |
| 13. Measurement of Numerical Aperture of Optical Fiber                                                     |                                                                                         |
| 14. Study the Bending Loss of an Optical Fiber                                                             |                                                                                         |
| 15. Study of the Characteristics of Laser LED                                                              |                                                                                         |
| 16. Study of Photo-Diode Detector<br>Characteristics (Use Avalanche Photo Diode)                           |                                                                                         |
| 17. Study of Transmission and Reception through Optical Fiber                                              |                                                                                         |

# **Course Title: Practical Paper P-XVII (based on Papers XIII and XV)**

## **Course Code: DECEPII**

| rse Experiments                                                                                                                                            | Course Outcome                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| ni-junction Transistor Characteristics                                                                                                                     |                                                                                           |
| T relaxation oscillator                                                                                                                                    |                                                                                           |
| ang characieristics of SUR.                                                                                                                                | Identification of components, Draw circuits,                                              |
| CR vo                                                                                                                                                      | construct circuit, record input and output voltages, draw graphs and perform calculations |
| ing of single SCR using OTI                                                                                                                                | wherever necessary, write results and                                                     |
| ring of two SCRs by a UJT.                                                                                                                                 | conclusions                                                                               |
| ase control circuit using SCR                                                                                                                              |                                                                                           |
| aracteristics of DIAC.                                                                                                                                     |                                                                                           |
| ring characteristics of a TRIAC                                                                                                                            |                                                                                           |
| lumination control using DIAC and TRIAC                                                                                                                    |                                                                                           |
| ight activated turnoff circuit using LDR and CR                                                                                                            |                                                                                           |
| ight activated turn off circuit using DIAC-RIAC and LDR                                                                                                    |                                                                                           |
| nverter using SCR and measurement of equency, output power.                                                                                                |                                                                                           |
| tudy of simple Chopper circuit/step-up copper circuit and measurement of on-time, ff-time, output voltage.                                                 |                                                                                           |
| RIAC and LDR nverter using SCR and measurement of equency, output power. tudy of simple Chopper circuit/step-up hopper circuit and measurement of on-time, |                                                                                           |

**Skill Enhancement Course: SEC-III** 

**Course Title:** Linear Circuit Designing Course Code: DCEPII

| Course Units                    | Course Outcome                                                                                                                                                                                                                       |  |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| I: Designing of simple circuits | Designing buffer circuit to interface LED with computer/microprocessor or to any instrument, waveform clipper, waveform clamper, single stage CE amplifier                                                                           |  |
| II: Regulated Power Supply      | Designing and construction of regulated power supply of given rating, use of fixed voltage regulator chips, determination of load regulation and line regulation of given power supply, Colpitt's oscillator, Phase-shift oscillator |  |

| Unit<br>Number | Unit Name                    | Topics                                                                                                                                                                                                                                                                                                                                               | Unit-wise Outcome                                                                           |
|----------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| I              | Number Systems<br>and Codes  | Decimal, Binary Octal and Hexadecimal number systems, inter conversions of number systems, Binary arithmetic (addition, subtraction, multiplication, division), 1's compliment, 2's compliment, binary subtraction using 1's and 2's compliments, Codes: BCD, Gray code, Conversion of BCD to Binary, Binary to Gray code and vice versa, ASCII code | Perform inter conversion of number systems, binary arithmetic and inter conversion of codes |
| П              | Logic Gates                  | Positive logic, Negative logic, Definition, symbol and truth table of NOT, OR, AND, NOR, EX-OR,EX-NOR gates. De-Morgan's theorem, Universal properties of NAND and NOR gates, bubbled ORgate, bubbled AND gate, gate propagation delay time, power dissipation                                                                                       | Identify different types of Logic Gates along with their properties                         |
| III            | Boolean Algebra<br>and K-Map | Boolean operations, logic expressions, rules and laws of Boolean algebra, Simplification of Boolean expression, SOP & POS form of Boolean expressions for logic network minterms, maxterms, Simplification of Boolean expression using K-map up to 4 variables for SOP.                                                                              | Simplify Boolean Expression                                                                 |
| IV             | Arithmetic Circuits          | Half Adder, full adder, realization of half and full adder using gates, parallel binary adder, half and full subtractor.                                                                                                                                                                                                                             | Construct Arithmetic Circuits                                                               |

**Course Code: CCEI-B** 

| Unit<br>Number | Unit Name                   | Topics                                                                                                                                                                                                                                                                       | <b>Unit-wise Outcome</b>                       |
|----------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| I              | Data Processing<br>Circuits | Introduction to multiplexers, designing of 2:1 MUX, 4:1 MUX, and 8:1 MUX, introduction to demultiplexers, designing of 2:1 DMUX, 4:1 DMUX, and 8:1 DMUX, Encoders: decimal to BCD encoder, priority encoder, Decoders: BCD to decimal decoder, BCD to seven segment decoder. | Construct Data Processing circuits             |
| П              | Flip- Flops                 | 1-bit memory cell, S-R flip-flop, clocked S-R flip-flop, preset and clear facility in flip-flop, J-K flipflop, race around condition, master-slave JK Flip Flop, D-type and T-type flip flop.                                                                                | Identify and use different types of Flip Flops |
| III            | Sequential logic circuit    | Concept of counters, types of counters, modulo of counter, 2-bit, 3-bit and 4-bit asynchronous counters, 2-bit, 3-bit and 4-bit synchronous counters, mod-5counter, decade counter using IC 7490, ring counter, shift registers: SISO, SIPO, PISO, PIPO.                     | Construct sequential logic circuits            |
| IV             | Data Converters             | D to A converters: R-2R Ladder DAC, characteristics of DAC, resolution, linearity, accuracy, settling time. A to D converters: parallel comparator ADC, successive approximation ADC, Characteristics of ADC: resolution, conversion time,                                   | Construct Data Converter Circuits              |

**Course Code: CCE-IIB** 

Paper Title: Amplifiers, Oscillators & Multivibrators (P-VI)Course Code: CCE III (Section A)

| Unit   | Unit Name      | Topics                                                               | <b>Unit-wise Outcome</b> |
|--------|----------------|----------------------------------------------------------------------|--------------------------|
| Number |                |                                                                      |                          |
| I      | Load Lines And | DC Load line, Q-Point and Maximum                                    | Identify different       |
| 1      | DC Bias        | Undistorted Output, Need for Biasing a                               | Biasing circuits along   |
|        |                | •                                                                    | with their parameters    |
|        | Circuits       | Transistor, Factors Affecting Bias                                   | with their parameters    |
|        |                | Variations, Stability factor, Beta                                   |                          |
|        |                | Sensitivity, Stability Factor for CB and CE                          |                          |
|        |                | Circuits, Base Bias with Emitter                                     |                          |
|        |                | Feedback, Base Bias with Collector                                   |                          |
|        |                | Feedback, Base Bias with Collector and                               |                          |
|        |                | Emitter Feedback, Voltage Divider Bias,                              |                          |
|        |                | Load Line and output Characteristics, AC                             |                          |
|        |                | Load line, (Numerical Problems)                                      |                          |
|        |                | 3,( 1 2 2 2 2,                                                       |                          |
| II     | Small Signal   | h-parameters, An equivalent circuit for                              | Construct different      |
|        | Amplifiers     | the BJT, Transconductance Model,                                     | configurations of        |
|        | F              | Analysis of CE Amplifier, CB Amplifier,                              | Transistor Amplifier     |
|        |                | CC Amplifier using h-parameters, Gain                                |                          |
|        |                | in decibels (Numerical Problems)                                     |                          |
| III    | Sine Wave      | Introduction to Positive and Negative                                | Identify and Classify    |
|        | Oscillators    | Feedback, Requirement of an Oscillator,                              | Oscillators              |
|        |                | Barkhausen Criterion, Hartley Oscillator,                            |                          |
|        |                | Colpitt's Oscillator, R-C Network, Phase                             |                          |
|        |                | Shift Oscillator, Wien Bridge Oscillator                             |                          |
|        |                | (Circuit diagram, Working, Expression of Frequency and Condition for |                          |
|        |                | Frequency and Condition for Oscillations) (Numerical Problems)       |                          |
| IV     | Multivibrators | Transistor as a Switch, Transistorized                               | Construct Multi-Vibrator |
| 17     | And Sweep      | AstableMultivibrator, Transistorized                                 | and Sweep Circuits       |
|        | Circuits       | MonostableMultivibrator,                                             | and Sweep Chedits        |
|        | Circuits       | Transistorized BistableMultivibrator                                 |                          |
|        |                | (working and waveforms), Introduction                                |                          |
|        |                | to Sweep Circuits, Sweep Voltage                                     |                          |
|        |                | Waveforms, Exponential Sweep, RC                                     |                          |
|        |                | Ramp Generator, (Numerical Problems)                                 |                          |

# Paper Title:Op-Amp, It's Applications & Some specialized ICs (P-VIII)

### **Course Code:**CCE IV (Section A)

| Unit<br>Number | Unit Name                             | Topics                                                                                                                                                                                                                                                     | Unit-wise Outcome                                                     |
|----------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| I              | Operational<br>Amplifier              | Theory of Differential Amplifier, Block Diagram of Op-Amp, Schematic Symbol, Ideal Characteristics, Input Offset Voltage, Input Offset Current, Input Bias Current, Input Impedance, Output Impedance, Open Loop Gain, CMRR, Slew Rate, Numerical Problems | Identify and List different<br>Parameters of Operational<br>Amplifier |
| II             | Applications of Operational Amplifier | Inverting Amplifier, Non-inverting Amplifier, Op-Amp as Adder, Opamp as Subtractor, OpAmp as Integrator, Op-Amp as Differentiator, Op-Amp as Comparator, Op-Amp as Schmitt's Trigger, Solving Differential Equation, Numerical Problems                    | Construct Arithmetic Circuits Using OP-Amp                            |
| III            | Active Filters                        | Introduction, First Order Low-<br>Pass Butterworth Filter, Second<br>Order Low-Pass Butterworth<br>Filter, First Order High-Pass<br>Butterworth Filter, Second Order<br>High-Pass Butterworth Filter,<br>Numerical Problems                                | Identify Use of Op-Amp in Active Filters                              |
| IV             | Specialized ICs                       | Block Diagram of IC555, IC 555 as<br>AstableMultivibrator, IC555 as<br>MonostableMultivibrator, IC566<br>(Pin Diagram, Block Diagram and<br>Use as VCO), Numerical Problems                                                                                | Construct Multi-vibrators Using IC 555 and 566                        |

### Paper Title:X- Practical Practical's based on P-VI & P-VIII

### **Course Code: CCEP II**

| Unit<br>Number | Unit Name                  | Topics/Experiment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Unit-wise Outcome                                                                |
|----------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| I              | Group I Op-Amp Experiments | 1. Op-Amp as Inverting Amplifier (DC Gain Verification) 2. Op-Amp as Non-inverting Amplifier(DC Gain Verification) 3. Op-Amp as Inverting Amplifier (Study of Frequency Response, Gain & -3db Band Width) 4. Op-Amp as Non-inverting Amplifier (Study of Frequency Response, Gain & -3db Band Width) 5. Op-Amp as Adder 6. Op-Amp as Subtractor 7. Op-Amp as Subtractor 7. Op-Amp as Schmitt's Trigger 9. Op-Amp as Comparator 10. Op-amp as Analog Computer 11. IC555 Timer as AstableMultivibrator (Measurement of Pulse Width , Space Width, Time Period, Frequency and Mark to | Draw circuit diagram, Construct the circuit and record input and output voltages |

|     |               | Measurement of Frequency with Change in Control Voltage) |                           |
|-----|---------------|----------------------------------------------------------|---------------------------|
| II  | Group II      | 13. Study of Transistorized CE                           | Draw circuit diagram,     |
| 111 | Group II      | Amplifier (Frequency Response,                           | Construct the circuit and |
|     | Amplifier and | Gain & -3db Band Width)                                  | record input and output   |
|     | Oscillator    | 14. TranstorizedHartely oscillator                       | waveforms                 |
|     | Experiments   | (Measurement of Frequency and                            |                           |
|     |               | Amplitude of Waveforms)                                  |                           |
|     |               | 15. TranstorizedColpitt's                                |                           |
|     |               | Oscillator (Measurement of                               |                           |
|     |               | Frequency and Amplitude of                               |                           |
|     |               | Waveforms)                                               |                           |
|     |               | 16. Transtorized Phase Shift                             |                           |
|     |               | Oscillator (Measurement of                               |                           |
|     |               | Frequency and Amplitude of                               |                           |
|     |               | Waveforms)                                               |                           |
|     |               | 17. Wein Bridge Oscillator using Op-Amp (Measurement of  |                           |
|     |               | Frequency and Amplitude of                               |                           |
|     |               | Waveforms)                                               |                           |
|     |               | 7                                                        |                           |
|     |               | 18. Transistorized                                       |                           |
|     |               | AstableMultivibrator.(                                   |                           |
|     |               | Measurement of Pulse Width,                              |                           |
|     |               | Space Width, Time                                        |                           |
|     |               | Period, Frequency and Duty Cycle)                        |                           |
|     |               | 19. Transistorized Mono stable                           |                           |
|     |               | multivibrator (Measurement of                            |                           |
|     |               | Gate Width)                                              |                           |
|     |               | 20. Transistorized                                       |                           |
|     |               | BistableMultivibrator                                    |                           |
|     |               | 21. RC Ramp Generator using                              |                           |
|     |               | Transistor. (Measurement of Rise                         |                           |
|     |               | Time, Fall Time and                                      |                           |
|     |               | Frequency)                                               |                           |

# Paper Title:XI- Practical Based On Papers VII And IX

| Unit   | Unit Name      | Topics/Experiment                                         | Unit-wise Outcome             |
|--------|----------------|-----------------------------------------------------------|-------------------------------|
| Number | Cint i (unic   | Topics/Daperment                                          | omi wise outcome              |
|        |                |                                                           |                               |
| I      | Microprocessor | 1. ALP to Transfer a block of data                        | Draw Flow Chart, write        |
|        | Coding         | from one location to another                              | Assembly Language             |
|        | Experiments    | location                                                  | Program, and Execute it using |
|        |                | 2. ALP for addition of two byte and result 8-bit          | Microprocessor Trainer Kit    |
|        |                | 3. ALP for addition of two byte and result 16-bit numbers |                               |
|        |                | 4. ALP for subtraction of two bytes                       |                               |
|        |                | 5. ALP for decimal addition of 8 bit numbers              |                               |
|        |                | 6. ALP for 1's complement of 8-bit and 16-bit numbers     |                               |
|        |                | 7. ALP to find 2's complement of 8-bit and 16-bit numbers |                               |
|        |                | 8. ALP for shifting of 8-bit number:                      |                               |
|        |                | a. Left by one bit position                               |                               |
|        |                | b. Left by two bit position                               |                               |
|        |                | 9. ALP to find sum of series of 8-bit numbers             |                               |
|        |                | 10. ALP to find multiplication of two 8-bit numbers       |                               |
|        |                | 11. ALP to find division of two 8-bit numbers             |                               |
|        |                | 12. ALP for masking off:                                  |                               |
|        |                | a. Four LSBs of 8-bit numbers                             |                               |

**Course Code: CCEP III** 

|  | b. Four MSBs of 8-bit numbers                                      |  |
|--|--------------------------------------------------------------------|--|
|  | 13. ALP to find smallest number of the series                      |  |
|  | 14. ALP to find largest number of the series                       |  |
|  | 15. ALP to generate square wave using IC 8255. Determine frequency |  |
|  | 16. Interfacing of 7-segment display with 8085 using IC 8255       |  |

Paper Title: Physics Workshop SkillSEC I Course Code: CCESI (Section A)

| Unit<br>Number | Unit Name                        | Topics                                                                                                                                                                                                                                                      | Unit-wise Outcome                                                               |
|----------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| I              | Measurement Skill                | Measuring units, conversion to SI and CGS. Familiarization with meter scale, verniercaliper, Screw gauge and their utility. Measure the dimension of solid bulk, volume of cylindrical beaker / glass, diameter of thin wire, thickness of metal sheet etc. | Determine Least Count of<br>VernierCaliper, Screw Guage<br>and volume of glass. |
| П              | Electric and<br>Electronic Skill | Use of multi-meter, soldering of electrical circuits having discrete components (R, L, C, diode) and ICS on PCB. Operation of oscilloscope. Making regulated power supply. Timer circuit, electronic switch using transistor and relay.                     | Measure time period, frequency using CRO and Construct regulated poer supply.   |

## Paper Title:Communication Electronics-I (P-XII) Course Code:DECE-I (Section A)

| Unit<br>Number | Unit Name                             | Topics                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>Unit-wise Outcome</b>                     |
|----------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Number         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |
| I              | Basics of<br>Communication<br>Systems | Introduction, Block diagram of Communication System, Classification of Communication Systems: Direction, Nature of signal and Technique of transmission, Need for Modulation, Types of Modulation, Bandwidth. (Numerical Problems)                                                                                                                                                                                                                     | Classify modulation and Communication System |
| II             | Amplitude<br>Modulation               | Amplitude Modulation Theory, Mathematical representation of AM wave, Modulation index, Frequency spectrum of AM wave, Bandwidth of AM, Power relations in AM wave, AM circuits: Basic circuit for BJT Collector modulation, Amplitude demodulator circuit. (Numerical Problems)                                                                                                                                                                        | Illustrate Amplitude Modulation              |
| III            | Frequency<br>Modulation               | Theory of Frequency modulation, Mathematical Representation of FM wave, Band width,Generation of FM, Direct method for FM generation, Transistor reactance modulator, Varactor reactance modulator. (Numerical Problems)                                                                                                                                                                                                                               | Illustrate Frequency<br>Modulation           |
| IV             | Pulse Modulation                      | Introduction, Classification of Pulse modulation systems, Sampling theorem, Nyquist criteria, Basic principles of Pulse-Amplitude modulation (PAM), Pulse-Width modulation(PWM), Pulse-Position modulation (PPM), Generation and detection of PAM only, Digital pulse modulation: Pulse-Code modulation (PCM) PCM transmitter, PCM receiver and quantization process, quantization error, application, advantages and disadvantages of PCM. (Numerical | Illustrate Pulse Modulation                  |

| Problems) |  |
|-----------|--|
|-----------|--|

# Paper Title:Communication Electronics-II (P-XIV) Course Code: DECE-II (Section A)

| Unit<br>Number | Unit Name                                  | Topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Unit-wise Outcome                                  |
|----------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| I              | Radio Receivers                            | Introduction, Basic block diagram of communication receiver, Tuned Radio Frequency (TRF) Receiver, Super Heterodyne Receiver, Characteristics of Radio receivers, Sensitivity, Selectivity, Fidelity, Image frequency and its rejection, Double spotting. (Numerical Problems)                                                                                                                                                                                                                                                                            | Illustrate Radio Receiver and its characteristics  |
| II             | Microwaves & Radar Systems                 | Introduction to microwave properties and applications of microwaves, Basic principles of radar system, Block diagram of basic pulsed radar system, Radar range equation, Moving target indication, CW Doppler radar. (Numerical Problems)                                                                                                                                                                                                                                                                                                                 | Identify properties of microwaves and Radar System |
| III            | Introduction to<br>Mobile<br>Communication | Historical perspectives, Cellular Systems, Third Generation (3G) Systems, Fourth-Generation (4G) Systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Illustrate Generations of<br>Mobile Communication  |
| IV             | Introduction to<br>Optical Fibres          | Fibre Optics, Structure of Optical Fibres, Classification of Optical Fibres, Propagation of Light, Refraction and Snell's law, Total Internal Reflection, Light Propagation through an Optical Fibre, Acceptance Angle and Numerical Aperture, Dispersion, Intermodal Dispersion, Fibre Characteristics, Fibre Losses, Calculation of Losses, Choice of Wavelength, Fibre Optic Communications, Applications of Fibre Optic Communication, Advantages of Optic Fibres, Disadvantages of Optic Fibres, Disadvantages of Optic Fibres. (Numerical Problems) | Illustrate Fibre Optic Communication               |

# Paper Title:Programming Skill in 'C'

## Course Code:SEC-IV(B)

| Unit<br>Number | Unit Name            | Topics                                                                                                                                                                                                                                                                                                                                                                                                          | Unit-wise Outcome                                     |
|----------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| I              | Fundamentals of C    | Introduction, Character set, 'C' Tokens, Keywords & Identifiers, Data types, Constant, Variables, Operators- Arithmetic, logical, relational, assignment, increment, decrement, conditional. Input/Output Statement, Structure of C program. Decision & looping, control structure: Statements - If, If-Else statement, Nested If-Else, Switch. Entry and exit controlled loops — While, Do-While and For loop. | Write simple programs in C using control structures   |
| П              | Arrays and Functions | Introduction to Array, One-dimensional arrays: Declaration & Initialization, Two dimensional arrays: Declaration & Initialization, Functions: Definition of function, function with arguments and without arguments, Strings in 'C', Standard Library string functions: strlen(), strcpy(),strcmp(), strcat().                                                                                                  | Write simple programs in C using Arrays and Functions |