

College of Arts, Commerce and Science, Parbhani

.....

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Prof. Dr. B.L.BABLE

Department: STATISTICS

Program: BSc FYSubject: STATISTICS

Course Code: CCS-I Section(A)

Paper Title: Descriptive Statistics and Computing

Unit Number	Unit Name	Topics	Unit-wise Outcome
Ι	Basic Statistics and	Meaning of statistics,	To understand graphic
	Data Condensation	Importance of Statistics in	&diagrammatic
		Industry, Medical Science,	presentation. To see the
		Social Sciences, Management	different types of data.
		Science, Agriculture and	
		Insurance, Information	
		Technology Education and	
		Psychology, Statistical	
		Organization in India and their	
		functions, Central Stational	
		Organization(CSO), Indian	
		Statistical Insttute(ISI) National	
		Sample Survey	
		Organization(NSSO), Indian	
		Institute of Population	
		Studies(IIPS), Bureau of	
		Economics and Statistics.	
		Types of data: Primary and	
		secondary data. Scales of	
		measurements of variables:	
		Nominal, Ordinal, Ratio and	
		Interval. Frequency	

		distribution(continuous and diccrete), Presentation of data, Graphical presentation of data by histogram, Frequency curve, Frequency polygon,Ogives, Stem and Leaf Chart. Dgrametic Representation of data:Bar chart, multiple bar charts,pie chart.	
Π	Measures of Central Tendency	Measures of Central Tendency, Arithmetic mean(simple, weighted and trimmed mean), Combined mean, Geometric mean, Harmonic mean Median , Mode, Derivation of median formula for frequency distribution, Quartiles, Box PLOT, Calculating quartiles by analytical and graphical method, Uses of mean , median, mode harmonic mean, geometric mean, Relation between means, Merits and Demerits of measures of central tendency.	To estimate central value of the given data
Ш	Measures of Dispersion	Concepts of measures of dispersion, Types of measures of dispersion, Range, Quartile deviation Mean absolute deviation, about mean, Median Mode, Standard deviation, Variance, Root mean square deviation, Properties of variance Relation between Root mean square deviation and Standard deviation, Coefficient of variation	To find the different measures of dispersion by using data
IV	Moments	Raw and Central Moments, Moments about arbitrary point, Relation between raw and central moments(Up to 4 th order), effect of change of origin	To estimate moments

		and scale on moments, Sheppard's Correction for central moments, Pearson's coefficients, Measures of Skewness and Kurtosis.	
V	Statistical Computing Using Excel	Graphical and diagrammatic presentation of data, Computation of various measures of central tendency, dispersion, skewness and kurtosis, moments using MS- Excel.	Interpretation of different parameters.

Specify Course Outcome: Estimation of parameters.

Specify Program Outcome: To recognize the different statistical aspects.

College of Arts, Commerce and Science, Parbhani

.....

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Prof. Dr. B.L.BABLE

Department: STATISTICS

Program: BSc FY Subject: STATISTICS

Course Code: CCS-II Section(A)

Paper Title: Theory of Variables and Attributes.

Unit Number	Unit Name	Topics	Unit-wise Outcome
I	Bivariate Data and Correlation.	Graphical method to represents bivariate data, scatter diagram, concept of correlation, Karl pearson's product moment correlation and its properties, derivation of Rank correlation formua.	To understand the bivariate distributions
Π	Linear Regression	Regression coefficient's, coefficient of determination, Lines of regression and their properties, Properties of regression coefficients, Derivation of lines of regression, residuals and their properties, residual plots.	To develop regression lines
III	Theory of Attributes	Concepts of attributes, Notations, Classification using dichotomy, Class frequency, Order of classes, Positive and negative class frequencies,,	To recognize attributes in statistics

		Ultimate class frequencies, Relation between class frequencies, Consistency of attributes, (up to three attributes)Independence and association of two attributes, Yules coefficient of association (Q), Coefficient of colligation (Y), Relation between them.	
V	Computation Using Excel	Computation of karl pearson's correlation coefficient, Spearman rank correlation coefficient, Fitting of regression line, Curves, Decide the best fit using R ² with help of MS-Excel.	To use of data in Excel

Specify Course Outcome: To make convenient for different uses of parameter statistics.

Specify Program Outcome: To use of Excel in estimation of different parameters by using data

College of Arts, Commerce and Science, Parbhani

.....

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Prof. Dr. B.L.BABLE

Department: STATISTICS

Subject: STATISTICS

Course Code: CCS-III Section(B)

Paper Title: Applied Statistics-VII

Program: BSc SY

Unit Number	Unit Name	Topics	Unit-wise Outcome
I	Multiple and Partial Correlation Coefficient:	Multiple and Partial Correlation (for trivariate data), Yule's notation, Plane of regression, residual's and its properties, Variance of the residual, Coefficient of multiple correlation, Properties of multiple correlation coefficient and Partial correlation coefficient.	To understand multiple and partial correlation
П	Time Series Analysis	Meaning of time series, Components of time series, Trend , Seasonal variation, Cyclical variation, Irregular component, Models of time series, Analysis of time series, Applications of time series, Autoregressive model AR(1)	To see the different models in time seres

III	Measurement of	i) Graphical Method, Method of	To understand the
111	trend and Seasonal	exponential smoothing ,	different methods of
	variations	Method of moving averages,	trend.
	variations	Method of least squares.	trend.
		Method of least squares.	
		ii) Measurement of seasonal	
		fluctuations by method of	
		simple averages, Ratio to trend	
		method, Ratio to moving	
		average method.	
IV	Theory of Index	Introduction, Problems	To recognize the theory
	Numbers	involved in construction of	of index numbers
		index numbers, Calculation of	
		price and quantity index	
		numbers, Simple(un-weighted)	
		Aggregate method, Weighted	
		aggregate method, Average of	
		price relatives, Weighted	
		average relatives, Chain	
		indices, Procedure of	
		construction of chain indices,	
		The criteria of good index	
		numbers, Unit Test, Time	
		reversal test, Factor reversal	
		test, Circular test Uses and	
		limitations of index numbers,	
		Laspeyre's price index,	
		Paasche's price index, Dorbish-	
		Bowley price index numbers,	
		Marshell-Edgeworth price	
		index, Irving Fisher's Ideal	
		index number Quantity Index	
		numbers, Value Index numbers.	

Specify Course Outcome: To develop the trends in time series.

Specify Program Outcome: To clear the models of time series.

Signature of Teacher

Dnyanopasak Shikshan Mandal's

College of Arts, Commerce and Science, Parbhani

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Prof. Dr. B.L.BABLE

Department: STATISTICS

Program: BSc SY Subject: STATISTICS

Course Code: CCS-IV Section(B)

Paper Title: Statistical Inference & Computing Using R-IX

Unit Number	Unit Name	Topics	Unit-wise Outcome
I	Theory of Point Estimation &Methods	 i)Basic concept , Prameter, Space, Statistic, Difference between estimate and estimator, Characteristics of estimators, Unbiasedness Consistency, Efficiency , Sufficiency, Factoriztion Theorem, Most efficient estimator, Minimum variance unbiased estimators(MVUE). ii)Methods of estimation: method of moment, Maximum likelihood estimation 	

II	Testing of Hypothesis	Introduction, Null hypothesis,	To use of different
		Simple hypothesis, Composite	testing of hypothesis
		hypothesis, Two types of	
		errors, Critical region, Level of	
		significance, P-value, Power of	
		the Nyman's pear sons lemma,	
		Most powerful test, Uniformly	
		most powerful test	
III	Longo gomplo togta	Test of significance for large	To understand the
111	Large sample tests	Test of significance for large	
		samples, Single Proportion,	significance of mean, difference of means etc
		Difference of proportions,	unterence of means etc
		Single mean, Difference of	
		means, Problems and	
		Application.	
IV	Non Parametric Tests	Sign test, Wilcox on signed rank	Use of statistics in NP
		test, Run test, Mann- Whitney U	test
		test, Merits and Demerits of	
		Non Parametric Tests.	
			LL C.D. C.
V	Fundamentals of R	Introduction to R, Features of R,	Use of R software in
	Software	Starting and ending R session,	statistics
		Getting help in R, R commands	
		and case sensitivity. Vectors	
		and vector arithmetic.	

Specify Course Outcome: Use of different statistical aspects in estimation theory

Specify Program Outcome: Procedure of testing statistical hypothesis for estimation of parameters .

College of Arts, Commerce and Science, Parbhani

.....

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Prof. Dr. B.L.BABLE

Department: STATISTICS

Program: BSc SY Subject: STATISTICS Course Code: CCS-III&IVSEM Section(B)

Paper Title: Practical Paper: CCSP III(Paper-XI)

Unit Number	Unit Name	Topics	Unit-wise Outcome
1.	Practical	Measurement of trend by method of exponential smoothing	Formation of trend
2.	Practical	Measurement of trend by moving averages	Smoothness of trend
3.	Practical	Measurement of linear trend by method of least squares	Formation of linear trend
4.	Practical	Fitting of AR(1) model	Model formation
5.	Practical	Measurement of seasonal variation by method of simple averages	Measurement of seasonal variation
6.	Practical	Measurement of seasonal variation by ratio to trend method	Ratio to trend formation

7.	Practical	Measurement of seasonal variation by ratio to moving average method	ratio to moving average formation
8.	Practical	Unweighted index number	Unweighted index formation
9.	Practical	Weighted index number by Laspeyr's and Paasche's index number.	weighted index formation
10.	Practical	Weighted index number by fisher's ideal index formula	By fisher index formula
11.	Practical	Cost of living index number	Cost of living for different commodities
12.	Practical	Multiple correlation coefficient by fitting of regression plane	Concept of correlation ®ression
13.	Practical	Partial correlation coefficient	Concept of partial correlation
14.	Practical	Wilcox ion signed rank test	Concept of rank test
15.	Practical	Sign test for single sample &two sample	Concept of sign test
16.	Practical	Run test	Concept of run test
17.	Practical	Median test	Concept of median test
18.	Practical	Mann-Whitney U Test	Concept of U test
19.	Practical	Applications of Fisher's Z- Transformation	Concept of Z transformation

Specify Course Outcome: Different trends have cleared with different methods implemented. Specify Program Outcome: Trends, seasonal variation, model formation autoregressive models Signature of Teacher

Dnyanopasak Shikshan Mandal's

College of Arts, Commerce and Science, Parbhani

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Prof. Dr. B.L.BABLE

Department: STATISTICS

Course Code: SECS-II (B)

Program: BSc SYSubject: STATISTICS

Paper Title: Statistical Study of Meteorology

Unit Number	Unit Name	Topics	Unit-wise Outcome
1.	Basic Concepts	BasicConceptsofmeteorologicalstatistics,Physical climatology, Climaticclassification,IndianclimatologyWinter,Pre-monsoon, South-West monsoonseason, Post Monsoon Season,Synoptic Climatology.	Climatic Aspects
2.	Introduction to Statistics	The purpose of statistics, Population and sample, Censuses and surveys, Descriptive statistics and inductive statistics, Fields of applications, Statistical variables-Qualitative and quantitative, Discrete and continuous variables.	Types of surveys

3.	Definition of Time	Different component of time	Formation and stationa
	Series	series, stationary time series, -	-rity in time series
		covariance and auto-	
		correlation, Method of trend	
		removing, Moving average	
		method. Differencing, ITMS	
		Software.	

Specify Course Outcome: Three aspects climate, different survey methods, trend formation in time series are concluded.

Specify Program Outcome: Different types of trends in time series has cleared in the given program.

College of Arts, Commerce and Science, Parbhani

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Prof. Dr. B.L. BABLE

Department: STATISTICS

Course Code: Section(A)

Program: BSc TY **Subject**: STATISTICS

Paper Title: Survey Sampling (Compulsory)-XII

Unit Number	Unit Name	Topics	Unit-wise Outcome
I	Sample Survey	Concepts of population and sample, Sampling unit, Sampling frame, Parameters and Statistics, Sampling Distribution, Principle Steps in sample survey, Principles of sample survey, Sampling and non-sampling errors, Advantages of sampling over complete over complete census, Limitations of Sampling.	To develop Simple Random Sampling technique
Π	Types of Sampling	Random and non-random sampling, Methods of achieving non-randomness, Sample size, Determination of sample size, Purposive sampling, Probability sampling, Snow ball sampling ,Quota Sampling, Mixed Sampling.	Various methods of sampling

III	Simple Random	Simple Random Sampling with	Simple random
	Sampling	and without replacement,	sampling with and
		Probability of selecting any	without replacement
		specified unit in the sample,	
		Selection of simple random	
		sample, Notation and	
		terminology, Estimation of	
		population mean and its	
		standard error, Simple random	
		sampling of attributes, Merits	
		and demerits of simple random	
		sampling	
IV	Stratified Random	Concept of Stratification,	To develop stratified
	Sampling	Sampling from heterogeneous	Sampling
		population, Notation and	
		terminology, Allocation of	
		sample size, Proportional	
		allocation, Neyman's	
		allocation. Estimation of	
		population mean and its	
		variance with under each	
		allocation and their comparison,	
		Proportional allocation Vs	
		Simple random sampling, Gain	
		in precision due to Stratification	
X 7		Complianternal Notation and	To develop systematic
V	Systematic Sampling	Sampling interval, Notation and terminology, Variance of	To develop systematic
		terminology, Variance of estimated means, Relation	Sampling
		· · · · · · · · · · · · · · · · · · ·	
		between systematic sampling	
		and simple random sampling, Merits and demerits of	
		systematic sampling, Condition	
		for systematic sampling to be	
		better than simple random	
		sampling.	
			l

Specify Course Outcome: Various sampling techniques

Specify Program Outcome: To learn this program is to develop scientific view to conduct survey in proper way to collect the data about specific perspective.

Signature of Teacher

Dnyanopasak Shikshan Mandal's

College of Arts, Commerce and Science, Parbhani

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Prof. Dr. B.L. BABLE

Department: STATISTICS

Course Code: Section(A)

Program: BSc TY **Subject**: STATISTICS

Paper Title: Design of Experiments (Compulsory)-XIV

Unit Number	Unit Name	Topics	Unit-wise Outcome
I	Analysis of Variance	Introduction, one way, two way classification with One observation per cell, Mathematical model, ANOVA table, Degree of freedom, Hypothesis to be tested.	To know the statistical model
Π	Design of Experiments	Introduction, Notation and Terminology, Principles of an experimental design, Replication, Randomization, Local control, Size of plot, Analysis of completely randomized design (CRD).	To know the design technology
Ш	Randomized Block Design(RBD)	RandomizedBlockDesign(RBD),StatisticalanalysisofRBDforobservationperexperimentalunit,ComparisonofCRD	To verify the various types of design

IV	Latin Square Design	RBD in terms of efficiency, Missing value in RBD. Latin Square Design(LSD), Analysis of Latin Square	To verify the various types of design
		Design, Advantages and disadvantages of Latin Square Design, Efficiency of LSD compared with CRD and RBD, Missing value in LSD.	
V	Factorial Experiments	Factorial experiments, purpose, Need, Advantages of factorial experiments, Analysis of 2^2 and 2^3 factorial experiments, Yates correction method of computing factorial effect total, ANOVA table.	To study the clustring of design

Specify Course Outcome: Design of Experiments

Specify Program Outcome: Students should able to have skills of designing various kinds of techniques at different.

College of Arts, Commerce and Science, Parbhani

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Prof. Dr. B.L. BABLE

Department:STATISTICS

Program: BSc TY **Subject**: STATISTICS

Course Code: Section(A)

Paper Title: Practical IV(Compulsory)(Based on theory papers-XII&XIV).

Unit Number	Unit Name	Topics	Unit-wise Outcome
1.	Practical	Drawing Simple Random Sample	To know the SRS
2.	Practical	Estimation of Population Mean using SRS	To know the SRS
3.	Practical	Estimation of Population Variance using SRS	To know the SRS
4.	Practical	Estimation of Population Mean and Variance using different allocations in Stratified Random Sampling	To know the SRS
5.	Practical	Estimation of gain in precision due to Stratification	To know the Stratification
6.	Practical	Determination of sample size in Stratified Sampling	To know the Stratification

7.	Practical	Estimation of Population mean	To know the
		and Variance in Systematic	Systematic Sampling
		Sampling	
8.	Practical	ANOVA one way classification	To know the ANOVA
9.	Practical	ANOVA two way	To know the ANOVA
		classification with one entry per	
		cell	
10.	Practical	Analysis of Completely	To know the CRD
		Randomized Design	
11.	Practical	Analysis of Randomized Block	To know the RBD
		Design	
12.	Practical	Analysis of Latin Square	To know the LSD
		Design	
13.	Practical	Missing Plot Technique of RBD	To know the RBD
14.	Practical	Missing Plot Technique of LSD	To know the LSD
15.	Practical	Efficiency of LSD over RBD	To know the LSD
16.	Practical	2 ² Factorial Experiment	To know the
			Factorization method
17.	Practical	2 ³ Factorial Experiment	To know the
			Factorization method

Specify Course Outcome: To understand SRS, CRD, RBD, LSD and ANOVA etc.

Specify Program Outcome: To have knowledge about analysis of various kinds of data.

College of Arts, Commerce and Science, Parbhani

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Prof. Dr. B.L. BABLE

Department: STATISTICS

Program: B.Sc. T.Y. Sem V **Subject**: STATISTICS

Course Code: SECS-III(A)

Paper Title: DATA MANAGEMENT AND ANALYSIS WITH ADVANCED EXCEL

Unit Number	Unit Name	Topics	Unit-wise Outcome
1.	Introduction	A Using excel lists, Creating a	To understand the
		list, Sorting, To perform simple	different program
		sort by MULTIPLE columns,	- 0
		Data forms: Adding data using	
		the data form, AutoFilter,	
		Advanced AutoFilters, Special	
		features for Filtered lists, Totals	
		and Subtotals, Total Row,	
		Subtotals, Managing Windows,	
		Multiple Windows Splitting	
		Windows, Windows, Freezing	
		Panes, Linking Data, Analysis	
		ool pack, Analysis by goal seek,	
		Analysis by pivot tables.	
2.	Object oriented	Working across application,	To know the different
	programming	File system objects controls,	program
		Class modules, Good	
		programming techniques,	
		Customizing menus and	
		toolbars debugging, Handling	

errors, Recording macros, Running macros, Customizing menus and toolbars, Writing	
macros, Selecting cells and ranges, Talking to your user variables, Subroutines,	
Arrangements and functions, Loops and logic, Debugging, Handling errors, Event handling, The visual basic rabbit-hole, Looping over collections, Creating forms, Using forms, Advanced form	
controls, Programming menus and toolbars, Working across applications, Crib sheet.	

Specify Course Outcome: To have computer oriented knowledge.

Specify Program Outcome: Tabulation and interpretation of elementary MS-Excel.

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Shri. D. N. Shinde

Department: Statistics

Program: B. Sc. FY Semester-II Subject: Statistics

Course Code: CCS –II Section (A)

Paper Title: Discrete Probability Distributions; Paper-III

Unit Number	Unit Name	Topics	Unit-wise Outcome
Ι	Uniform Distribution	Uniform Discrete Distribution: - Definition, Mean, Variance and Moment Generating Function, Examples on real life situation	Learn the Discrete Distribution
II	Binomial Distribution	Bernoulli Distribution: Definition, Mean, Variance and Moment Generating function, Examples on real life situation, Binomial Distribution: Definition, Moments, Moment Generating Function, Cumulants, Additive property of Binomial Distribution, Recurrence Relation for the Probabilities of Binomial Distribution, Mode, Problems, Examples on real life situation	Know the distribution function and its characteristics
III	Poisson distribution	Poisson distribution as a limiting case of Binomial Distribution, moments of Poisson distribution, mode of Poisson Distribution, recurrence relation for moment of Poisson distribution, moment Generating and cumulant generating function, additive property of Poisson Distribution, recurrence formula for the probabilities of Poisson distribution	Know the idea of binomial and poisson distribution
IV	Negative Binomial & Geometric Distribution	 (i)Definition, Moment Generating Function, cumulants, Moments, Relation between negative binomial and binomial distribution (ii) Geometric Distribution definition, lack of memory, Moments of geometric distribution moment generating function, mean, variance, Applications of geometric distribution in the real life situation and relation with the binomial distribution, 	Learn the Expected value of Negative Binomial & Geometric Distribution
v	Hyper geometric Distribution & Multinomial Distribution	(I)Hyper geometric Distribution: Definition, Mean and variance, relation with Binomial distribution, Recurrence relation for the probabilities of Hyper Geometric Distribution, Examples on real life.(II) Multinomial Distribution:- Introduction, moments of Multinomial Distribution,Examples.	Gathering basic knowledge of Probability distribution function

Specify Course Outcome: Acquire basic knowledge about probability distribution function like binomial and poisson.

Specify Program Outcome: Understand probability distribution function like binomial and poisson with mathematical expectations and generating function.

Signature of Teachers

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Shri. D. N. Shinde

Department: Statistics

Program: B. Sc. FY Semester-I &II

Subject: Statistics Course Code: CCSP –I Section (A & B)

Paper Title: Practical; Paper-V

Unit Number	Unit Name	Topics	Unit-wise Outcome
Ι		 Construction of Frequency distributions Bar Chart, Frequency polygon, Frequency Cruve, Ogives Histogram. (Also using MS- EXCEL/Spread Sheet) Measures of central tendencies Mean, Median and Mode. (Also using MS-EXCEL/Spread Sheet) Compute Quartiles by analytical and graphical method Compute measures of dispersions Range, Quartile deviation, Mean deviation Standard deviation (Also using MSEXCEL/ Spread Sheet Coefficient of variation Moments Correlation coefficient (Results to be verified by using computer) Regression (Results to be verified by using computer Spearman's rank correlation coefficient (For repeated and unrepeated ranks) Fitting of Binomial distribution Fitting of Curves (i) Y=a+bx (ii) Y=ab^x Second degree curve Attributes Computation of probabilities of bivariate distribution Most Plausible values of system of liner equations 	Experience the study of representation of statistical data by graph

Specify Course Outcome: Analyze the statistical data by different measures.

Specify Program Outcome: Understand the statistical representation of data by graph and tabular form.

Signature of Teachers

Subject: Statistics

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Shri. D. N. Shinde

Department: Statistics

Program: B. Sc. SY Semester-IV

Course Code: CCS –IV Section (A)

Paper Title: Exact Sampling Distributions; Paper-VIII

Unit Number	Unit Name	Topics	Unit-wise Outcome
I	Chi-square Distribution	Chi-Square variate, Derivation of Chi-Square Distribution (Using method of moment generating function), Nature of Chi- Square probability curve, moment generating function, Cumulant Generating Function, limiting form of Chi-Square Distribution for large Degrees of Freedom Moments, Mode and Skewness of ChiSquare Distribution, Additive property of Chi-Square Distribution	Learn the Chi-Square Distribution
п	Applications of Chi-square distribution	Chi-square Distribution for Testing of Hypotheses (i) Population variance (ii) goodness of fit (iii)Test of independence of attributes, contingency table, Yates correction for 2x2 contingency table (iv) Homogeneity of three or more correlation Coefficients, Problems	Know the Applications of Chi- square distribution
ш	t- Distribution	Students't' statistic, Derivation of student's t distribution, Fisher's t, Distribution of Fisher's t, moments of t- distribution, limiting form of t-distribution, graph of tdistribution. Applications of t – distribution for testing of hypothesis.(1)t-test for single mean, (2) t-test for difference of means (paired & unpaired), (3) t-test correlation coefficient, problem	Know the idea of t- distribution
IV	F- Distribution	F- Statistic, Probability density function, moments of F-distribution, mode of Fdistribution, F- test for equality of two variances, Relation between F & tdistribution, F and Chi-Square Distribution, problem	Learn the F- Statistic
v	Fisher's Z – Distribution	Probability density function of Fisher's Z Distribution, Moment generating function of Z- distribution, Fisher's Z Transformation, problems	Gathering basic knowledge of Exact Sampling Distributions

Specify Course Outcome: Acquire basic knowledge about Exact Sampling Distributions function like t, F and Z distribution.

Specify Program Outcome: Understand the Exact Sampling Distributions function like t, F and Z distribution.

Signature of Teachers

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Shri. D. N. Shinde

Department: Statistics

Program: B. Sc. FY Semester-I Subject: Statistics

Course Code: CCS –I Section (A)

Paper Title: Elementary Probability Theory; Paper-I

Unit Number	Unit Name	Topics	Unit-wise Outcome
Ι	Probability	Random experiment, trial ,out come and event, Exhaustive events, favourable events, Independent events, sample space, classical definition of probability, Empirical definition of probability, Axiomatic approach to probability, Addition Theorem of probability, Extension of Addition theorem of probability (up to 3events), Conditional probability. Conditional probability and Independent events, mutually and pair wise independent events, multiplication theorem of probability for Independent finite events, Bayes theorem, Baye's Theorem for further events	Learn the probability theory
II	Random Variable (Univariate)	Random Variable, Distribution function, discrete random variable, Probability Mass Function, Distribution function of discrete random variable, Continuous random variable, Probability Density Function, Distribution function of Continuous random variable, Properties of distributions (Continuous and Discrete)	Know the distribution function and random variables
ш	Random Variable (Bivariate)	Definition, Two Dimensional Probability Mass Function, Marginal Probability Function, Conditional Probability Function, Two Dimensional Distribution Function, Marginal Distribution Function Joint Density Function, Marginal Density Function, Stochastic Independence and related theorems	Know the two dimensional random variables with probability function
IV	Mathematical Expectations	Definition, Expected value of random Variable, Expected value of Function of random variable properties of Expectations, Various measures of Central Tendency, Dispersion, skewness and Kurtosis for Discrete and continuous probability distribution, Basic concepts, Variance, Properties of variance, covariance, Variance of a Linear combination of Random variable, conditional expectations	Learn the Expected value of random Variable

Specify Course Outcome: Acquire basic knowledge about probability theory, random variable with mathematical expectations and generating function.

Specify Program Outcome: Understand probability theory, random variable with mathematical expectations and generating function.

Signature of Teachers

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Shri. D. N. Shinde

Department: Statistics

Program: B. Sc. SY Semester-III

Subject: Statistics

Course Code: CCS –III Section (A)

Paper Title: Continuous Probability Distributions; Paper-VI

Unit Number	Unit Name	Topics	Unit-wise Outcome
Ι	Uniform and Exponential Distribution	 i) Rectangular or Uniform distribution: Definition, Moments, Moment generating function, Mean, Variance, Mean deviation about mean, examples, problems and application, Relation with other distributions, Properties of Rectangular distribution. Distributions of distribution function of continuous random variable. ii) Exponential Distribution: - Probability density function, Moment Generating function, Mean and Variance, lack of memory property, problems, 	Learn the Continuous Probability Distributions
II	Normal Distribution	Probability density function, Normal Distribution as a limiting form of Binomial Distribution Important characteristics of Normal Distribution and Normal Probability curve, Mode, Median, Quartiles, Moment Generating Function and Cumulant Generating Function, Moments, Additive property for Linear combination of two independent normal variables, Mean deviation about mean, Area property (Normal probability integral),Importance of normal distribution, fitting of normal distribution, Use of Normal Probability	Know the normal distribution function and its characteristics
III	Gamma Distributions	Gamma Distribution with single and two parameters, Moment Generating Function, Cumulant Generating Function, limiting form of Gamma Distribution properties of Gamma Distribution, Beta Distribution of first and second kind, Moments of Beta Distributions, Relation between Exponential and Gamma Distribution as a sum of i.i.d. exponential random variables, Problems, examples, Applications, Transformation of one & Two Dimensional random variables.	Know the idea of Gamma Distribution
IV	Weibull and Cauchy Distribution	(i)Weibull Distribution:-Probability Density Function of Weibull Distribution with given shape and scale, parameter, Moments of standard Weibull Distribution,	Learn the Expected value of Probability Density Function of Weibull Distribution

		Characteristics of Weibull distribution (ii) Cauchy Distribution:- Probability density function of Cauchy Distribution, Characteristics of standard Cauchy Distribution, Comment on non existence, moments	
	Logistic Distribution	Central Limit theorem, Application of central limit theorm, Probability density function of	Gathering basic applications of
V		Logistic distribution, moment generating function of Logistic distribution, problems, De-Moivre, Lapalce Theorem.	continuous distribution function

Specify Course Outcome: Acquire basic knowledge about continuous distribution function like normal and gamma.

Specify Program Outcome: Understand continuous distribution function like uniform and normal with their properties.

Signature of Teachers

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Shri. D. N. Shinde

Department: Statistics

Program: B. Sc. SY Semester-III Subject: Statistics Course Code: SECS –I (B)

Paper Title: Data Collection and Interpretation; SECS-I (B)

Unit Number	Unit Name	Topics	Unit-wise Outcome
Ι		The objective of the course is that, The Student to collection & presentation of data. It also discusses how data can be summarized and analyzed for drawing statistical inference. The students will be introduced to important data sources that are available & will also be trained in the use of free statistical software to analyze data. Course Outline: 1. Sources of data, Population census versus sample surveys, Random Sampling. 2. Univariate frequency distribution, Measures of central tendency: mean, median & mode, Arithmetic Mean ,Geometric Mean & Harmonic Mean, Measures Of Dispersion, Skewness & Kurtosis. 3. Bivariate Frequency distribution, Correlation & Regression, Rank Correlation. 4. Introduction to Probability theory, Notation of random experiment, sample space, event, probability of event ,Conditional Probability, Independence of events, Random variables & probability distribution, Binomial & Normal Distributions. 5. Estimation of population parameters from sample data. Unbiased estimators for population mean and variance. 6. Basics of index numbers : price and quantity index numbers.	Experience the study of collection & presentation of data

Specify Course Outcome: Experience the study of summarized and analyzed for drawing statistical inference.

Specify Program Outcome: Understand the summarized and analyzed for drawing statistical inference.

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Shri. D. N. Shinde

Department: Statistics

Program: B. Sc. TY Semester-V

Subject: Statistics

Course Code: DSES –I Section (B)

Paper Title: Linear Programming - Paper-XIII (B1) (Elective)

Unit Number	Unit Name	Topics	Unit-wise Outcome
I		Basics of operations Research: Introduction, scope, definition of operations research, Objectives of operations research, Phases of operations research, scope of operations research, Limitations of operations research.	Learn the basic idea of operational research
п		Linear Programming Problem: Introduction, General Linear Programming problems, Mathematical Formulation of L.P.P., Basic solution, Non degenerate and Degenerate Basic solution, Important Thermos Important Definitions, Convex set and Thermos on it.	Formulation of real problem into mathematical form
III		Solution of L.P.P. by Graphical Method, Slack and surplus variables, some definitions and Notations. Fundamental Theorems of L.P.P (Only statement). Basic Feasible Solution from feasible solution, Simplex Method of L.P.P, artificial variables, Big-M method, Numerical problems	Formulation of real problem into graphical form
IV		Assignment problem: Introduction, Assignment problem, Mathematical Formulation of an Assignment problem, Unbalanced Assignment Problem, method for solving a minimal Assignment problem (Hungarian Method)	Learn the Assignment method
V		Transportation problem: Introduction, Difference between Transportation problem and Assignment problem, Important definitions, solution of Transportation problem, Initial feasible solution ,North -West corner rule method, Lowest-cost entry method, Vogel's approximation method, Optimality test, computational procedure of Optimality test(Modified Distribution method), Resolving Degeneracy in Transportation problem, unbalanced Transportation problem	Learn the Transportation method

Specify Course Outcome: Acquire basic knowledge operation research and linear programming.

Specify Program Outcome: Understand the linear programming techniques for various problems.

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Shri. D. N. Shinde

Department: Statistics

Program: B. Sc. SY Semester-III &IV

Subject: Statistics Course Code: CCSP –II Section (A)

Paper Title: Practical; Paper-X

Unit Number	Unit Name	Topics	Unit-wise Outcome
I		 Fitting of Normal distribution Problems based on area property of Normal distribution Chi-square test for population variance Chi-square test for goodness of fit Chi-square test for 2x2 contingency table also using Yates correction Chi-square test for Independence of attributes Chi-square test of Homogeneity of Correlation coefficients t - Test for single mean t - Test for testing the significance of sample correlation coefficient F-Test for equality of two population variances Estimation by method of moments Estimation by method maximum likelihood estimation Construction of confidence interval for mean and proportion Large sample test for single proportions Large sample test for single proportions Note: Results should be verified by Using R- 	Experience the study of continuous probability distribution and exact sampling distribution

Specify Course Outcome: Analyze the continuous probability distribution and exact sampling distribution measures.

Specify Program Outcome: Understand the continuous probability distribution and exact sampling distribution measures.

Signature of Teachers

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Shri. D. N. Shinde

Department: Statistics

Program: B. Sc. TY Semester-VI Subject: Statistics

Course Code: DSESP –V Section (B)

Paper Title: Based on theory papers-Paper XVII

Unit Number	Unit Name	Topics	Unit-wise Outcome
Ι		 Formulation of Linear Programming Problem Solution of L.P.P. by Graphical method Basic feasible solution of L.P.P. Solution of L.P.P. by Simplex method Solution of L.P.P. by Big-M method Assignment problem North-West Corner Rule method Matrix Minima method Vogel's Approximation Method Optimality test Unbalanced Transportation problem Game with and without Saddle point Graphical method to solve 2 x n and m x2 game Dominance Property Sequencing Queuing Simulation Traveling salesman problem PERT CPM 	Expertise various techniques of linear programming

Specify Course Outcome: Acquire basic knowledge operation research and its different techniques to solve the problems.

Specify Program Outcome: Understand the operation research and its different techniques to solve the problems for finding the optimum solutions.

Signature of Teachers

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Shri. D. N. Shinde

Department: Statistics

Program: B. Sc. TY Semester-VI

Subject: Statistics **Course Code**: SECS –IV (B)

Paper Title: Skill Enhancement Course SECS-IV (B)

Unit Number	Unit Name	Topics	Unit-wise Outcome
Ι		Introduction to clinical trials: need and ethics of clinical trials, bias and random error in clinical studies, conduct of clinical trials, overview of Phase I-IV trials, multicenter trials. Data management: data definitions, case report forms, database design, data collection systems for good clinical practice. Bioavailability. Design of clinical trials: parallel vs. cross-over designs, cross-sectional vs. longitudinal designs, objectives and endpoints of clinical trials, design of Phase I trials, design of single-stage and multi-stage Phase II trials. Design and monitoring of Phase III trials with sequential stopping; design of bio-equivalence trials. Inference for 2x2 crossover design: Classical methods of interval hypothesis testing for bioequivalence, Bayesian methods, nonparametric methods. Determining sample size, multiplicative (or log-transformed) model, ML method of estimation, assessment of inter and intra subject variabilities, detection of outlying subjects. Optimal crossover design: Balaam's design, Two-sequence dual design. Optimal four period designs. Assessment of bioequivalence for more than two drugs	Experience the study of Data management and Design and monitoring of clinical trials with sequential stopping

Specify Course Outcome: Experience the study of summarized and analyzed for drawing statistical clinical trials.

Specify Program Outcome: Understand the summarized and analyzed for drawing statistical clinical trials.

Signature of Teachers