

DnyanopasakShikshanMandal's

College of Arts, Commerce and Science, Parbhani

Pro-forma for program and course outcomes (2.6.1)

Paper Title: INTRODUCTORY MICROBIOLOGY (P-I)

Name of Teacher: Dr. P. S. Wakte Program: BSc FY (Semester-I) Subject: Microbiology **Department:** MICROBIOLOGY **Course Code:** CCMB I (Section A)

Unit	Unit Name	Topics	Unit-wise Outcome
Number			
I	Scope of Microbiology	Definition and concept, Types of microorganisms, Distribution of microorganisms in nature, Beneficial & Harmful role of microorganisms in Agriculture, Human & Animal health, Industries and Genetic engineering with suitable examples	Have developed a good knowledge of the development of the discipline of Microbiology, Are able to explain the useful and harmful activities of the microorganisms.
II	Historical Developments in Microbiology General	Early observation of microorganisms, Controversy over spontaneous generation - Contribution of different scientists, Recognition of microbial role in diseases - Koch's postulates and contribution of Louis Pasteur and Edward Jenner, Recognition of microbial role in fermentation, Discovery of pure culture concept, Aseptic surgery The eukaryotic cell: Algae, Fungi and Lichens,	Gain good knowledge of the development of the discipline of Microbiology and the contributions made by prominent scientists in this field. Have developed a very good
	Characters of Microorganisms	Prokaryotic cell: Archaebacteria, Bacteria and Actinomycetes, Difference between Eukaryotic and Prokaryotic cell, General characters of viruses, General characters of Protozoa	understanding of the characteristics of different types of microorganisms
IV	Taxonomy of Microbes	Microbial Classification and Nomenclature a. Taxonomic groups, b. Goals of classification General methods of classifying bacteria: Intuitive method, Numerical taxonomy and Genetic relatedness, Nomenclature of bacteria, Introduction to Bergey's Manual of Bacteriology (9th edition)	Differentiate a large number of common bacteria by their salient characteristics; Classify bacteria into groups, methods to organize/classify these into and basic tools to study these in the laboratory.

Specify Course Outcome: Acquired knowledge and understanding of the microbiology concepts as applicable to diverse areas such as medical, industrial, environment, genetics, agriculture, food and others.

Specify Program Outcome: The aim of the undergraduate degree in Microbiology is to make students knowledgeable about the various basic concepts in wide-ranging contexts, which involve the use of knowledge and skills of Microbiology and acquire knowledge and understanding of the microbiology concepts as applicable to diverse areas such as medical, industrial, environment, genetics, agriculture, food and others. Their understanding, knowledge and skills in Microbiology needs to be developed through a thorough teaching learning processes in the class, practical skills through the laboratory work, their presentation and articulation skills, exposure to industry and interaction with industry experts, write short research-based projects where they are guided and mentored by the academic and other experts of the subject.

DnyanopasakShikshanMandal's College of Arts, Commerce and Science, Parbhani

B.Sc. First Year

Paper Title: Fundamentals of Microbiology [P- II]

Name of Teacher:Dr. Manwar A. V.Program:BSc FY (Sem-I)Subject: Microbiology

Department: MICROBIOLOGY **Course Code**: CCMB-I (Section B)

Unit Number	Unit Name	Topics	Unit-wise Outcome
I	Bioinstrumentation	Microscopy: Definition of Magnification, Resolving power, Depth of focus, Focal length, Angular aperture and Numerical aperture. Objectives (Low, High, oil immersion) and oculars function. Condensers: Abbes, Cardioids, Parabolic and their functions. Principle, construction using ray diagram and applications of compound microscope: Electron microscope (SEM and TEM).	Gain Expertise in handling and use of microscope for study of microorganisms which are among the basic skills expected form a practicing microbiologist
Π	Ultra Structure of Bacterial Cell	Basic concepts of shape, arrangement, and size of prokaryotes cells, Importance of cell shape, cell size in rods and cocci. Structure, Chemical composition and function of following: Capsule and slimes, Cell wall and cytoplasmic membranes c. Flagella and Motility, fimbriae and pili Nuclear material, Plasmids, Mesosomes and Ribosome Reserve materials and other cellular inclusions.	Describe and understand ultra structure of bacterial cell along with its biological and structural importance within the cells, such as cell organelles, cell wall composition and various appendages like capsule, flagella or pilli.
III	Sterilization Techniques	Definition of Sterilization, Disinfection, Antiseptic, Germicide, Sanitizer, Fungicide, Viricide, Bacteriostatic and Bactericidal agent. Chemical Disinfectants: Properties of ideal disinfectant, Chemical Agents: Phenol and Phenolic compounds, Alcohols, Gaseous sterilizing Agents: Formaldehyde, Ethylene oxide and β - Propiolactone. Evaluation of disinfectant (Phenol coefficient). Sterilization by Physical Agent a) Moist Heat: Boiling, Tyndallization, Pasteurization and	Understand the principle & importance of various sterilization techniques. Execute this knowledge for sterilization of culture media, glass wares and plastic ware to be used for microbiological work

		Steam under pressure (Autoclave).	
		Dry heat: Flaming, Incineration and	
		Hot air oven. b) Radiation: Ionizing	
		and Non-Ionising radiations. c)	
		Filtration and Types of filters	
		(Concept with e.g. Seitz filter)	
IV	Microbial Nutrition	Concept of microbial nutrition, The	Describe the nutritional
		common nutrient requirements	requirements of bacteria
		(Basic Nutritional requirements of	by their salient
		Microorganisms /macronutrient and	characteristics and
		micronutrient) Requirement for C,	classify them into
		H, O and Electron with their	different nutritional
		significance Requirements for N, P	categories Like
		and S with their significance Growth	Autotrophs hetrotrophs
		factors Nutritional categories of	chamotrophs
		microorganisms on the basis of	nhototropha lithotropha
		carbon and energy source.	phototrophs, nulotrophs,
			organotropns
		1	1

Specify Course Outcome:

Major learning outcome of this course is to develop a very good understanding of several fundamental microbiology techniques and gain expertise over handling of basic instruments which are commonly used in study of microorganisms.

Specify Program Outcome:

Impart Knowledge of the diverse places where microbiology is involved. Understanding of diverse Microbiological processes. Basic skills such as culturing microbes, maintaining microbes, safety issues related to handling of microbes, Good Microbiological practices etc. Moderately advanced skills in working with microbes such as Pathogens.

Dnyanopasak Shikshan Mandal's

College of Arts, Commerce and Science, Parbhani

Pro-forma for program and course outcomes (2.6.1)

.....

Paper Title: BASIC MICROBIOLOGY & BIOMOLECULES (P-III)

Name of Teacher: Dr. P. S. Wakte Program: BSc FY (Semester-III) Subject: Microbiology **Department:** MICROBIOLOGY **Course Code**: CCMB I (Section A)

Unit	Unit Name	Topics	Unit-wise Outcome
Number			
Ι	Microbial	Definition: Stain, Dye, Acidic stain, Basic	Are able to perform basic experiments
	Staining	stain, Auxochrome, Chromophore,	to grow and study microorganisms in
	Techniques	Mordent, Chromogen, Leuco compound,	the Laboratory.
		Natural stain, Fluorochrome, Decoloursing	
		agent and Counter stain., Theories of Staining,	
		Principles, mechanism, procedure and	
		observation of:a. Simple staining:	
		Monochrome & Negative staining.	
		Differential staining: Gram's & Acid fast	
		staining, Structural staining: Cell wall & PHB	
		staining	
II	The Viruses:	Viruses, Bacterial viruses (Bacteriophage),	Understood viruses and the chemical
	Distribution	Multiplication of Virulent phage: The lytic	nature of viruses, different types of
	and Structure	cycle, The development of temperate phages:	viruses infecting animals, plants and
		Lysogeny, Classification of viruses (LHT	bacteria(bacteriophage),Understanding
		system), Distribution and structure of HIV,	about the biology of bacteriophage,
		Enlist plant animal and human viral diseases	Gained knowledge of a variety of plant
		with their causative agents	viruses and animal viruses,
III	Biomolecule	Carbohydrates- Definition and classification,	Have developed how the carbohydrates
		Triose, Pentose, Hexose (Examples),	& Lipids make the structural and
		Disaccharides:- Glycoside linkage (Lactose,	functional
		Maltose and Sucrose), Oligosaccharides,	components such as energy generation
		Trisaccharides (Raffinose), Polysaccharides:-	and as storage food molecules for the
		Homo and Heteropolysaccharides, Biological	bacterial cells
		Significance of carbohydrates, Lipids-	
		Definition and Classification, Types of lipids	
		i. Simple lipids:- Triglycerides, ii. Conjugated	
		lipids:- Phosphatidic acid, Phospholipids and	
		cholesterol	
		Biological importance of lipids	
IV	Informational	Nucleic acids, a. Ribose and Deoxyribose	Well conversant about multifarious
	and	sugars, Nitrogen bases, Nucleosides and	function of protein
	Functional	Nucleotides	Knowledge about and nucleic acids as
	Biomolecule	b. DNA:- Properties, Structure and Functions	genetic material.
		C. KINA:- Properties, Structure and Functions	
		Proteins, a. Definition and classification, b.	
		Pepude bonds, c. Enzymes, d. Biological	
		Significance of proteins	

Specify Course Outcome: Describe phenotypic characteristics of bacterial cells, cell organelles, cell wall composition. Differentiate a large number of common bacteria by their salient characteristics; the ability to describe role of viruses in the causation of the diseases. Developed a very good understanding of various biomolecule which are required for development and functioning of a bacterial cell **Specify Program Outcome:** The aim of the undergraduate degree in Microbiology is to make students knowledgeable about the various basic concepts in wide-ranging contexts, which involve the use of knowledge and skills of Microbiology and acquire knowledge and understanding of the microbiology concepts as applicable to diverse areas such as medical, industrial, environment, genetics, agriculture, food and others. Their understanding, knowledge and skills in Microbiology needs to be developed through a thorough teaching learning processes in the class, practical skills through the laboratory work, their presentation and articulation skills, exposure to industry and interaction with industry experts, write short research-based projects where they are guided and mentored by the academic and other experts of the subject.

B.Sc. First Year

Name of Teacher: Dr. Manwar A V.

Department: Microbiology

Program: B.Sc. F. Y. Sem. IISubject: MicrobiologyCourse Code: CCMB II (Section B)Paper Title: Microbial Physiology P- IV

Unit Number	Unit Name	Topics	Unit-wise Outcome
Ι	Bacterial Cultivation and Maintenances	Cultivation of Bacteria : Media used, Properties of good culture media. Synthetic, Non-synthetic, Natural, Selective, Differential, Enriched, Enrichment, Assay, Minimal, Maintenance and Transport Medium. Buffers in culture medium. Anaerobic and anaerobic cultivation, Pure culture Techniques. Definition and Significance of pure culture Methods of isolation of pure culture: Streak plate, Pour plate, Spread plate and Single cell isolation.	Know various culture media and their applications. Understand General bacteriology and microbial techniques for isolation of pure cultures of bacteria, Employ aseptic techniques and be able to perform routine culture handling tasks safely and effectively
Π	Permeation	Passive diffusion Facilitated diffusion Active transport mechanism Group translocation Uptake of amino acids and sugars (as examples)	Understand the microbial transport systems and the modes and mechanisms of energy conservation in microbial metabolism .
Ш	Reproduction and Growth	Concept of growth Microbial Reproduction: Binary fission, budding. Bacterial growth: Definition, growth curve – Phases of growth, Growth Kinetics, Generation time, Methods of measurement of growth, different types of culture system: Batch culture system, Continuous culture system (Chemostat and Turbidostat), Factors affecting growth-Temperature, pH, Osmotic pressure and Nutrients	Know the various Physical and Chemical growth requirements of bacteria and get equipped with various methods of bacterial growth measurement.
IV	Bacterial Sporulation	Bacterial Sporulation- Structure of endospore, Endospore formation (Stages) in <i>Bacillus</i> , Spore germination, Significance of Ca- dipicolinate (DPA) and soluble Proteins (SASP)	Understand the importance of spores and the processes of endospore formation and its germination.

Specify Course Outcome:

Acquire capability of describing growth characteristics of microorganisms capable of growing under on different media and different environmental conditions. Develops understanding of assimilation process of nutrients for growth and development. Get aquanted with different growth phases of bacteria under controlled condition. Mechanism of sporulation and germination in bacteria is understood.

Specify Program Outcome:

Understand the structural similarities and differences among various physiological groups of bacteria. Know various Culture media and their applications. Know General bacteriology and microbial techniques for isolation of pure cultures of bacteria. Master aseptic techniques and be able to perform routine culture handling tasks safely and effectively. Understand the microbial transport systems and the modes and mechanisms of energy conservation in microbial metabolism. Know the various Physical and Chemical growth requirements of bacteria and get equipped with various methods of bacterial growth measurement. Determine importance of endospore in bacteria and acquire knowledge regarding the process of sporulation and germination.

Dnyanopasak Shikshan Mandal's College of Arts, Commerce and Science, Parbhani

Pro-forma for program and course outcomes (2.6.1)

Paper Title: Annual Practical's based on Section A & Section B of CCMBI & CCMB IIName of Teacher: Dr. P.S. WakteDepartment: MICROBIOLOGYProgram: BSc FYSubject: MicrobiologyCourse Code: Practical Paper Number: V

Unit	Unit	Topics	Unit-wise Outcome
Number	Name		
PRACTICAL	Practical	Microscopy- Different parts of compound microscope.	Handling and use of microscopes
V		Use and care of compound microscope, Construction,	for the study of microorganisms
		Operation and utility of laboratory Equipments. (any	which are among the basic skills
		Six)- Autoclave, Hot air oven, Incubator, pH meter,	expected from a practicing
		High speed centrifuge,	microbiologist. They also get
		Colorimeter/Spectrophotometer, Anaerobic jar,	introduced a variety of
		Bacterial filters, Laminar air flow, Staining, Simple	modifications in the microscopes
		staining: Monochrome, Negative, Differential :	for specialized viewing Major
		Gram's staining, Structural staining: Cell wall	learning outcome of this course is
		staining (Chance's method)PHB staining (Burdon's	that students develop a very good
	method.), Hanging drop technique, Micrometry,		understanding of several
		Preparation of culture media, Nutrient broth and Agar,	microbiological techniques and
	MacConkeys Broth and Agar, Sugar Media, Isolation		instruments which are commonly
		of bacteria from mixed culture, Streak plate method,	used in a microbiology
		Spread plate method, Pour plate method, Effect of	laboratory, Principles which
		physical and chemical agents on growth of bacteria	underlies sterilization of culture
		pH, Temperature, U.V. rays, Antibiotics, Qualitative	media, glassware and plastic ware
		tests for Carbohydrates: Benedict's test, Protein:	to be used for microbiological
		Biuret test, Nucleic acid: Diphenylamine test (DPA)	work. Several separation
		for DNA and Orcinol test for RNA, Demonstration of	techniques which may be required
		Yeast, Fungi, Actinomycetes, Algae and Protozoa.	to be handled later as
		Study of Bacterial Growth curve.	microbiologists.

Specify Course Outcome:

This lab course aims to provide the students with analytical and on hands practical skills. Practicals conducted enhances and develops students to analyse, appreciate, understand the basic concepts of chemical reactions that occur in living systems, which enable them to understand the various perspectives of applied sciences that benefit the mankind.

Specify Program Outcome:

The aim of the undergraduate degree in Microbiology is to make students knowledgeable about the various basic concepts in wide-ranging contexts, which involve the use of knowledge and skills of Microbiology. Their understanding, knowledge and skills in Microbiology needs to be developed through a thorough teaching learning processes in the class, practical skills through the laboratory work, their presentation and articulation skills, exposure to industry and interaction with industry experts, write short research-based projects where they are guided and mentored by the academic and other experts of the subject.

DnyanopasakShikshanMandal's **College of Arts, Commerce and Science, Parbhani**

.....

Pro-forma for program and course outcomes (2.6.1)

_____ Paper Title: APPLIED MICROBIOLOGY (P-VI) Name of Teacher: Dr. Shiva C. Aithal **Program:** BSc SY (Sem-III) **Subject**: Microbiology

Department: MICROBIOLOGY Course Code: CCMB III (Section A)

Unit	Unit Name	Topics	Unit-wise Outcome
Number			
Ι	Air	Definition and composition of air, sources of	Gain Expertise in Microbial
	Microbiology	microorganisms in air, significance of	aspects of Air related to
		microorganisms in air (beneficial and harmful),	Human, Animal and Plant
		droplet, droplet nuclei and aerosol, enumeration of	Health and their Environment
		microorganisms in air, control of microorganisms in	
		air.	
II	Water	Types of water, Sources of microorganisms in water,	Gain capability in handling
	Microbiology	Index of water pollution, Different	Microbial aspects of Drinking
		indicator microorganisms, coliform bacteria,	and Recreational Water
		Microbial examination of water, water borne	related to Human, Animal and
		Diseases.	Plant Health and their
			Environment
III	Sewage	Definition of sewage, composition and strength of	Become skilled in Microbial
	Microbiology	sewage (BOD and COD), Microbiology of	aspects Sewage and Effluent
		sewage, Domestic sewage treatment, Municipal	treatment and its proper
		sewage treatment (Primary, secondary,	disposal with respect to
		Tertiary sewage treatment) and Composting.	Human Health and
			Environment
IV	Milk	Definition and composition of milk, sources of	Handling milk and milk
	Microbiology	contamination of milk, desirable and	products quality with respect
		undesirable changes in milk, milk born diseases,	Microbial perspectives
		Microbial examination of milk,	pertaining to food quality and
		pasteurization of milk, Application of	human Health.
		microorganisms in dairy industry (examples and	
		microflora).	

Specify Course Outcome:

Applied microbiology trains students for gaining expertise in the microbial world and the way it interacts with humans. It looks at how we can harness and utilize the powers of the microbes in areas ranging from air, water and sewage microbiology to Milk Microbiology and extends to industrial applications. A wide range of microbial by-product production, quality assessment and health hazard monitoring is possible by students who get well versed in this course.

Specify Program Outcome:

The aim of the undergraduate degree in Microbiology is to make students knowledgeable about the various basic concepts in wide-ranging contexts, which involve the use of knowledge and skills of Microbiology and acquire knowledge and understanding of the microbiology concepts as applicable to diverse areas such as medical, industrial, environment, genetics, agriculture, food and others. Their understanding, knowledge and skills in Microbiology needs to be developed through a thorough teaching learning processes in the class, practical skills through the laboratory work, their presentation and articulation skills, exposure to industry and interaction with industry experts, write short research-based projects where they are guided and mentored by the academic and other experts of the subject.

DNYANOPASAK SHIKSHAN MANDAL'S COLLEGE OF ARTS, COMMERCE AND SCIENCE, PARBHANI <u>B. Sc. Second Year Microbiology</u>

Paper Title: IMMUNOLOGY [P- VII] & MEDICAL MICROBIOLOGY IX]

Name of Teacher: Dr. Manwar A. V. Program: BSc SY [Sem-III & Sem - IV] IV (Section B) **Department:** MICROBIOLOGY **Course Code:** CCMB-III (Section B) & CCMB

Programme	Programme outcomes	Programme Specific Outcomes (Outcomes of the Paper)	Course Outcomes (Outcomes of each unit in a Paper)
B. Sc. S. Y Sem. III Paper VII. Immunology Core Course III (Section B)	Impart Knowledge of the diverse places where microbiology is involved. Understanding of diverse Microbiological processes. Basic skills such as culturing microbes, maintaining microbes, safety issues related to handling of microbes, Good Microbiological practices etc. Moderately advanced skills in working with microbes such as Pathogens.	Understand the basic components of the immune system and how this system serve to protect the host against disease-causing microbes. Understand Concept related to cells and organs related to immune system, Immunity, Immune response and immune mechanism of both Immunity & Hypersensitivity.	 Unit I: Conceptual basis for understanding pathogenic microorganisms and the mechanisms by which they cause infection leading to infectious disease in the human body. Understand the overall classification of Immunity. Unit II: Demonstrate an understanding of key concepts in immunology Understand the overall organization of the immune system its functioning and differentiate different type of Immune response to different pathogens. Unit III Understand the salient features of antigen antibody reaction & its uses in diagnostics and various other studies. Unit IV: Comprehend the destructive nature of Immuity and its mechanism in an human individual i.e. allergic reaction
B. Sc. F. Y Sem. IV Paper IX Microbial Physiology Core Course IV (Section B)	Impart Knowledge of the diverse places where microbiology is involved. Understanding of diverse Microbiological processes. Basic skills such as culturing microbes, maintaining microbes, safety issues related to handling of microbes, Good Microbiological practices etc. Moderately advanced skills in working with microbes such as Pathogens.	Acquired a fairly good understanding of normal microflora of human body, common diseases caused by bacteria, viruses, fungi and other microbes.	Unit I: Understand all the facts regarding cholera and typhoid and apply the knowledge for prevention from these diseases. Unit II: Determine the importance of Respiratory tract infections, acquire knowledge regarding etiological agent its symptoms treatment and prophylaxis. Unit III: Understand the severity of infectious diseases caused by viruses, its diagnosis and prevention. measurement. Unit IV: Understand Protozoal and Fungal disease, their causative agent, mode of infection, epidemiology, treatment, lab diagnosis, prophylaxsis.

Unit	Unit Name	Topics	Unit-wise Outcome
Number			
Ι	Food Microbiology	Definition and composition of food, Sources of contamination in food, Factors affecting kind and number of microorganisms in food. Significance of microorganisms in food, Spoilage and its types (Different types of spoilages with suitable examples). Preservation of food, food poisoning (Botulinum, Staphylococcal intoxication and Salmonellosis).	Understand and explain the action of microorganisms that inhibit, create, or contaminate food.
II	Soil Microbiology and Carbon cycle	Definition and composition of soil, types of soil, signification of microorganisms in soil, soil as culture medium. Carbon cycle (with respect to cellulose and starch).	Identify and describe activities of Microrganisms in soil which affect soil structure and fertility.
III	Elemental transformation in soil	Nitrogen cycle, Sulfur cycle, Phosphorus cycle.	Describe and interpret the activities of Microorganisms in soil which affect decomposition of organic matter in soil to produce natural fertilizers.
IV	Microbial interaction, association and ecology	Symbiosis, antibiosis, mutualism, parasitism. Microbe –microbe interaction-Lichen Plant- microbe interaction: Mycorrhiza, Rhizosphere. Animal - microbe interaction: Rumen, bioluminescence Concept of population, community, Microbial succession, climax and adaptation (Phenotypic and genotypic adaptations).	Illustrate and apply role of soil microorganisms in plant growth and plant exudates, root metabolism, and understand development of healthy soil structure.

Specify Course Outcome:

To apply the knowledge of microorganisms causing food spoilage, pathogens that may cause disease post cooked or storage, those used to produce fermented foods such as cheese, yogurt, bread, beer, and wine, meat and meat products, fruits vegetables and those with other useful roles such as producing probiotics. Understand of principles of soil science, microbiology, and the chemistry and physics of natural elemental cycles, which maintain the balance of our ecosystem. Describe significance of soil fertility, appreciate role of soil microorganisms which play essential roles in the nutrient cycles that are fundamental to life on the planet. Illustrate and explain how microbes are responsible for cycling nutrients through the environment, creating important symbiotic relationships, providing energy in the absence of sunlight, and digesting the food we eat.

Specify Program Outcome:

The aim of the undergraduate degree in Microbiology is to make students knowledgeable about the various basic concepts in wide-ranging contexts, which involve the use of knowledge and skills of Microbiology and acquire knowledge and understanding of the microbiology concepts as applicable to diverse areas such as medical, industrial, environment, genetics, agriculture, food and others. Their understanding, knowledge and skills in Microbiology needs to be developed through a thorough teaching learning processes in the class, practical skills through the laboratory work, their presentation and articulation skills, exposure to industry and interaction with industry experts, write short research-based projects where they are guided and mentored by the academic and other experts of the subject.

Signature of

DNYANOPASAK SHIKSHAN MANDAL'S COLLEGE OF ARTS, COMMERCE AND SCIENCE, PARBHANI <u>B. Sc. Second Year Microbiology</u>

Paper Title: LAB. COURSE BASED On P-VI & P-VIII (PX) & LAB. COURSE BASED ON P- VII & P-IX (P-XI

Name of Teacher: Dr. Manwar A. V. Program: BSc SY [Sem-III & Sem - IV] III (Section B) **Department:** MICROBIOLOGY **Course Code:** CCMBP- II (Section A) & CCMBP

Programme	Programme outcomes	Programme Specific Outcomes (Outcomes of the Paper)	Course Outcomes (Outcomes of each unit in a Paper)
B. Sc. S. Y Sem. III & IV Paper - X LAB Course II CCMBP - II (Section A)	Impart Knowledge of the diverse places where microbiology is involved. Understanding of diverse Microbiological processes. Basic skills such as culturing microbes, maintaining microbes, safety issues related to handling of microbes, Good Microbiological practices etc. Moderately advanced skills in working with microbes such as Pathogens.	Acquire skills of handling microorganisms in the laboratory and study their characteristics. Has developed laboratory skills in isolating and detecting microbes from soil and water. Laboratory skills of testing microbial load in Food and milk. Has developed skills for growing microorganisms in the laboratory for the production of different enzymes	
B. Sc. S. Y Sem. III & IV Paper - X LAB Course III CCMBP - III (Section B)	Impart Knowledge of the diverse places where microbiology is involved. Understanding of diverse Microbiological processes. Basic skills such as culturing microbes, maintaining microbes, safety issues related to handling of microbes, Good Microbiological practices etc. Moderately advanced skills in working with microbes such as Pathogens.	Acquire skills of handling microorganisms in the laboratory and study their characteristics. Has developed laboratory skills in detecting enzymes antigen and antibodies using dignostic kits Laboratory skills of staining blood and enumerate RBCs and WBCs in whole blood Has developed skills for growing Pathogenic microorganisms in the laboratory and identifying them on basis of various biochemical tests and	

	perform sensitivity tests.	antibiotic	

Paper Title: LAB. COURSE BASED On P-VI & P-VIII (PX)

Name of Teacher: Dr. Manwar A V MICROBIOLOGY Program: BSc SY (Sem-III) (Section A)

Subject: Microbiology

Course Code: CCMBP II

Department:

By the conclusion of this course, the students:

Acquire skills of handling microorganisms in the laboratory and study their characteristics. Has developed laboratory skills in isolating and detecting microbes from soil and water. Laboratory skills of testing microbial load in Food and milk. Has developed skills for growing microorganisms in the laboratory for the production of different enzymes

Paper Title: LAB. COURSE BASED ON P- VII & P-IX (P-XI)

Name of Teacher: Dr. Manwar. A.V. Program: BSc SY (Sem-IV) Subject: Microbiology **Department:** MICROBIOLOGY **Course Code :** CCMBP- III (Section B)

By the conclusion of this course, the students:

Acquire skills of handling microorganisms in the laboratory and study their characteristics. Has developed laboratory skills in detecting enzymes antigen and antibodies using dignostic kits Laboratory skills of staining blood and enumerate RBCs and WBCs in whole blood Has developed skills for growing Pathogenic microorganisms in the laboratory and identifying them on basis of various biochemical tests and perform antibiotic sensitivity tests.

SEC

Paper Title: Diagnostic Microbiology

Name of Teacher: Dr. P.S. Wakte Program: BSc SY Subject: Microbiology

Department: MICROBIOLOGY **Course Code: SECMB II A**

Unit	Unit Namo	Topics	Unit wise
	Unit Name	Topics	Ont-wise
Number			Outcome
Ι	Importance of	Common Bacterial, Viral, Fungal and Protozoan	Have developed a
	diagnosis of	diseases.	very good
	diseases		understanding of
II	Collection and	Collection of clinical samples and precautions	practical aspects
	Examination of	required (oral cavity, throat, skin, Blood, Urine,	of diagnostic
	clinical samples	and Feces). Examination of sample by staining -	testing, medical
	•	Gram stain, Ziehl-Neelson staining for	sample testing skills
		tuberculosis, Giemsa stained thin blood film for	using kits available
		malaria.	in the market
III	Diagnosis of	MacConkeys agar, Blood agar, Chocolate agar,	
	pathogen using	Lowenstein-Jensen agar.	
	culture media		
IV	Serological	Agglutination, Precipitation, ELISA, Immuno	
	methods for	fluorescence, Kits for rapid detection	
	diagnosis	of Pathogens	
PRACTICAL	Practice	1. Clinical sample collection from throat & Skin,	This lab course
		Blood staining for Malarial parasite (MP), 2.	aims to provide the
		Preparation of Blood agar. Preparation of	students with
		Chocolate agar 3, Detection of Typhoid by	analytical and on
		WIDAL, Detection of Syphilis by RPR	hands practical
			skills

Specify Course Outcome: Have developed a very good understanding of practical aspects of collection of different clinical samples, their transport, culture and examination by staining, and molecular and immunological diagnostic methods for diagnosis of microbial diseases. **Specify Program Outcome:**

The aim of the undergraduate degree in Microbiology is to make students knowledgeable about the various basic concepts in wide-ranging contexts, which involve the use of knowledge and skills of Microbiology. Their understanding, knowledge and skills in Microbiology needs to be developed through a thorough teaching learning processes in the class, practical skills through the laboratory work, their presentation and articulation skills, exposure to industry and interaction with industry experts, write short research-based projects where they are guided and mentored by the academic and other experts of the subject.

Paper Title: Public Health MicrobiologyName of Teacher: Dr. P.S. WakteProgram: BSc SYSubject: Microbiology

Department: MICROBIOLOGY **Course Code: SECMB I A**

Unit	Unit Name	Topics	Unit-wise
Number			Outcome
Ι	Scope of Public	Definition, areas covered in Public Health	Have developed a
	Health	Microbiology, Overview of disease process	very good
	Microbiology		understanding of
II	Water	Water borne pathogens & water borne diseases	practical aspects
	Microbiology	Bacteria: E.coli, Salmonella, Shigella, Vibrio	of testing, water
		cholerae	and food testing
		Viruses : Enteroviruses, Hepatitis virus	skills using kits
		Protozoa : Entamoeba histolytica, Giardia	available in the
III	Skill in water	Sources of water, Potable water ,Importance of	market.
	quality monitoring	potable water, Indicator	
		organisms of water pollution, standard tests for	
		determination of potability of water,	
		Quantitative: TC, FC, Membrane Filter count.	
		Qualitative: Presumptive, Confirmed, Completed.	
IV	Skill in food and	Enrichment culture technique, Detection of specific	
	milk quality	microorganisms on selective	
	monitoring	media : XLD agar, Wilson and Blair agar, Manitol	
		Salt agar, MacConkeys agar Pathogenic	
		microorganisms: Salmonella, Coliforms,	
		Staphylococcus aureus,	
PRACTICAL	Practice	1.Isolation of Coliforms, Identification of fecal	This lab course
		Coliforms by IMViC tests	aims to provide the
		2. MPN: TC & FC	students with
		3. Enrichment culture technique for <i>Salmonella</i> ,	analytical and on
		S.aureus. Determination of Microbiological quality	hands practical
		of Milk by MBRT, Resazurin Test.	skills

Specify Course Outcome: Have developed a very good understanding of practical aspects diagnosis of common human waterborne infections, preventive measures for human waterborne infections by the use of antibiotics and vaccines, Gain skills food and milk quality testing. **Specify Program Outcome:**

The aim of the undergraduate degree in Microbiology is to make students knowledgeable about the various basic concepts in wide-ranging contexts, which involve the use of knowledge and skills of Microbiology. Their understanding, knowledge and skills in Microbiology needs to be developed through a thorough teaching learning processes in the class, practical skills through the laboratory work, their presentation and articulation skills, exposure to industry and interaction with industry experts, write short research-based projects where they are guided and mentored by the academic and other experts of the subject.

Dnyanopasak Shikshan Mandal's College of Arts, Commerce and Science, Parbhani

Pro-forma for program and course outcomes (2.6.1)

Paper Title:MICROBIAL GENETICS (P-XII)Name of Teacher:Dr. Shiva C. AithalProgram:BSc TY (Sem-V)Subject:Microbiology

Department: MICROBIOLOGY **Course Code**: DSEMBI (Section A) SEM-

Unit Numbor	Unit Name	Topics	Unit-wise Outcome
Number I II	The Genetic Material Prokaryotic DNA replication	 a) Evidences for DNA as genetic material i. Griffith Experiment, Avery <i>et al</i> Experiments, ii. Hershey and Chase Experiment b) Discovery of RNA as viral genetic material i. Gierer and Schramm Experiment (TMV) c) Properties of DNA as Genetic Material d) Chemical stability of DNA and its information content e) Structure of prokaryotic Chromosomes E. coli- The model genetic organism General Concepts of DNA Replication b) Semi Conservative DNA Replication c) Replicon Model (Cairns Model), Precursors and Enzymes of DNA Replication d) Mechanism of DNA Replication: Initiation, Elongation (Beta Clamp and Progressive Polymerases) and Termination e) Replication in E. coli (In Short) 	Recall and Remember the historical aspects which prove DNA is the genetic material and understand the structure and chemical stability of DNA. Demonstrate the knowledge and understanding of the molecular machinery of living cells, via understanding these in bacteria.
III	Molecular Recombination in Bacteria	a) General Perspective of Genetic Recombination (with Holliday Model as example) b) Homologous Recombination in E.coli (Initiation, Synapsis, Branch Migration and resolution) c) Types of Recombination i. Site Specific Recombination (Integrative and Excessive Recombination) ii. Illegitimate Recombination (Non- Homologus Recombination) iii. Transposition: a. Transposable elements in Prokaryotes b.Insertion Sequence	Illustrate and understand how genetic information in the DNA is selectively expressed by genetic variation to allow organisms to evolve in response to a changing environment via DNA rearrangements.
IV	Genetic Exchange in bacteria	a) Transformation i. Introduction and History ii. Mechanism of transformation iii. Competence, Binding, Penetration, Synapsis and Integration. b) Conjugation i. Discovery of conjugation in bacteria ii. Properties of F plasmid/Sex factor iii. Hfr strains and their formation iv. Mechanism of Conjugation v. F 'factor and Sexduction c) Transduction i. Introduction and discovery ii. Generalized and Specialized transduction iii. Abortive transduction	Exhibit knowledge and understanding of the principles that govern the structures of macromolecules and their participation in vital molecular functions via recombination processes.

Specify Course Outcome:

Understanding microbial genes, genomes, and gene expression is essential for understanding the biology and evolution of microorganisms and their interactions with the environment. Students will gain: 1) Understanding of fundamental concepts in microbial genetics. 2) Insight into genetic methods used to investigate interesting biological problems. 3) Insight into current, exciting topics in microbial genetics and related fields. 4) Experience in reading and evaluating scientific articles. 5) Understanding of how microbial genetics has advanced science and society.

Specify Program Outcome:

The aim of the undergraduate degree in Microbiology is to make students knowledgeable about the various basic concepts in wide-ranging contexts, which involve the use of knowledge and skills of Microbiology. Their understanding, knowledge and skills in Microbiology needs to be developed through a thorough teaching learning processes in the class, practical skills through the laboratory work, their presentation and articulation skills, exposure to industry and interaction with industry experts, write short research-based projects where they are guided and mentored by the academic and other experts of the subject.

Dnyanopasak Shikshan Mandal's College of Arts, Commerce and Science, Parbhani

Pro-forma for program and course outcomes (2.6.1)

Paper Title: MICROBIAL METABOLISM (P- XIII A) Name of Teacher: Dr. P. S. Wakte Program: BSc TY (Semester-V) Subject: Microbiology

Department: MICROBIOLOGY **Course Code**: DSEMB I (Section B1)

Unit	Unit Name	Topics	Unit-wise Outcome
<u>Number</u> I	Enzymes	Definition, Physicochemical properties of enzymes, Coenzymes and Cofactors, Nomenclature and Classification of enzymes, Mechanisms of enzyme action, Specificity of enzymes, Enzyme kinetics: Michaelis-Menten equation, Factors affecting enzyme Activity, Inhibition of enzyme activity: Competitive, Non- competitive and Uncompetitive inhibition, Regulation of enzyme activity: Allosteric enzymes, Multienzyme system and Isoenzymes.	Well conversant about multifarious function of enzymes; are able to calculate enzyme activity and other quantitative and qualitative parameters of enzyme kinetics; also knowledge enzyme inhibitions, Student are able to make buffers, study enzyme kinetics and calculate Vmax, Km.
Π	Microbial Metabolism	Introduction to metabolism, catabolism and anabolism with examples, Role of nucleotides in metabolism: Nucleotides as building blocks of nucleic acids; ATP as currency of cell; Pyridine and Flavin nucleotides, Basic pathways of carbohydrate catabolism: EMP, HMP, ED, and PKP, TCA cycle, β -Oxidation of saturated and unsaturated fatty acids	Describing the growth characteristics of the microorganisms which require Different nutrient for growth and the associated biochemical pathways of energy generation for survival of heterotrophs.
Ш	Mechanisms of Energy Transformations in Microorganisms	Respiration, Photosynthesis and Fermentation (Basic concepts),Generation of ATP: Oxidative Phosphorylation, Photophosphorylation and Substrate level Phosphorylation, Biochemical mechanisms of respiration in Heterotrophs and Chemoautotroph, Respiratory electron transport chain in bacteria, Characteristics of Bacterial RETC and It's Components	Describing the metabolic characteristics associated with mechanisms of energy generation for their survival of autotrophs, heterotrophs, chemolithoautotrophs etc.

IV	Microbial Fermentations	Ethanol fermentation by yeasts and bacteria, Lactic acid fermentation: Homo and Heterolactatic fermentation, Mixed acid fermentation, Acetone-Butanol fermentation, Butanediol fermentation, Succinic acid fermentation.	Differentiating concepts of aerobic, anaerobic and fermentative respiration and how these are manifested in the form of different fermentative pathways in microorganisms.
----	----------------------------	---	--

Specify Course Outcome: Study enzyme kinetics & Inhibitions, applications and calculate Vmax, Km, Kcat values. Describing the growth characteristics of the microorganisms, which require different nutrient for growth and the associated mechanisms of energy generation for their survival like autotrophs, heterotrophs, chemolithoautotrophs etc.

Specify Program Outcome: The aim of the undergraduate degree in Microbiology is to make students knowledgeable about the various basic concepts in wide-ranging contexts, which involve the use of knowledge and skills of Microbiology and acquire knowledge and understanding of the microbiology concepts as applicable to diverse areas such as medical, industrial, environment, genetics, agriculture, food and others. Their understanding, knowledge and skills in Microbiology needs to be developed through a thorough teaching learning processes in the class, practical skills through the laboratory work, their presentation and articulation skills, exposure to industry and interaction with industry experts, write short research-based projects where they are guided and mentored by the academic and other experts of the subject.

Paper Title: MOLECULAR BIOLOGY (P-XIV) Name of Teacher: Dr. Shiva C. Aithal Program: BSc TY (Sem-VI) Subject: Microbiology

Department: MICROBIOLOGY **Course Code:** DSEMBII (Section A)

Unit	Unit Name	Topics	Unit-wise Outcome
Number			
I	Gene Expression	 a) Genetic code b) Characteristics of Genetic code: Triplet code, comma free, non-overlapping, degenerate, start and stop signals andwobble hypothesis c) Structure of RNA Polymerase (RNAP) d) Process of transcription e) Structure of Ribosome f) Process of Translation g) Bacterial Transcriptional and Translational Cycle 	To determine how genes and the proteins they encode function in the intact organism. Because mutations can interrupt cellular processes, mutants often hold the key to understanding gene function.
II	Mutagenesis and DNA Repair	a) Concept of Mutation b) Types of Mutations: c) Mechanism of Spontaneous Mutation: d) Mechanism of Induced Mutation: e) Repair of DNA iii. Base Excision Repair (BER) iv. Mismatch Excision Repair (MER)	To understand the range of strategies used by bacteria to adapt and survive to their changing conditions of environment.
ш	Regulation of Gene expression in Prokaryotes	a) Gene regulation at Transcription level: Repressors, Activators, Sigma factor and Attenuation b) Gene regulation at Translation level c) The lac Operon of E. coli d) The trp Operon of E. coli	Show that bacteria use genomic modifications to affect gene expression by providing various examples of different strategies and the mechanisms involved in adaptive responses.
IV	Molecular Techniques and Applications	a) Introduction, Definition and purpose of Cloning b) Tools for molecular cloning i. ENZYMES: Restriction endonucleases, DNA ligases, alkaline phosphatase, DNA Modifying enzymes ii. VECTORS: Plasmids- pBR322, Bacteriophage- Phage λ , Cosmids c) Methods of Gene Transfer i. Transformation ii. Electroporation iii. Liposome Fusion iv. Transduction d) Screening Strategies (In short) i. Insertional Inactivation ii. Immunochemical Methods iii. Colony hybridization e) Application: i. Expression of Human insulin gene in E.coli	Illustrate molecular machinery of living cells. List out tools used for gene exploration. Understand the utilisation modified DNA to create pharmaceutical, diagnostic, agricultural, environmental, and other products to benefit society. To study how alter genetic information so that human diseases can be modelled and studied.

Specify Course Outcome:

Course is aimed at appreciating complexity of genes, genomes, and gene expression which is essential for understanding the biology and evolution of microorganisms and their interactions with the environment. Students will gain: 1) Understanding of fundamental concepts in molecular biology. 2) Insight into genetic methods used to investigate interesting recombinant DNA technology. 3) Insight into current, exciting topics in Molecular Genetics and related branches. 4) Experience in reading and evaluating scientific articles. 5) Understanding of how Molecular Genetics has advanced as a science and benefited the society.

Specify Program Outcome:

The aim of the undergraduate degree in Microbiology is to make students knowledgeable about the various basic concepts in wide-ranging contexts, which involve the use of knowledge and skills of Microbiology. Their understanding, knowledge and skills in Microbiology needs to be developed through a thorough teaching learning processes in the class, practical skills through the laboratory work, their presentation and articulation skills, exposure to industry and interaction with industry experts, write short research-based projects where they are guided and mentored by the academic and other experts of the subject.

Paper Title: Annual practical Based on XII and XIII A

Name of Teacher: Dr. Shiva C. Aithal Program: BSc TY Subject: Microbiology **Department:** MICROBIOLOGY **Course Code**: Practical Paper Number: XVI

Unit	Unit	Topics	Unit-wise
Number	Name		Outcome
PRACTICAL XVI	Practical	1. Purification of chromosomal/plasmid DNA and study of DNA profile. i. Confirmation of nucleic acid by spectral study. ii. Quantitative estimation by diphenylamine test. iii. DNA denaturation and determination of Tm and G + C contents. iv. Agarose gel electrophoresis of DNA. 2. Effect of UV radiations i. To study the survival pattern of E.coli/yeast ii. Repair mechanisms in E.coli / yeast (Dark and Photo reactivation). 3. Isolation of antibiotics resistant Bacterial Mutants by Physical/ Chemical agents. 4. Ampicillin selection method for isolation of auxotrophic mutants. 5. Extraction and purification of RNA from S. cerevisiae. 6. Studies on gene expression in E. coli with reference to Lac operon. 7. Study of Conjugation in E. coli. 8. Restriction digestion and Agarose gel electrophoresis of DNA. 9. Generalized Transduction in E. coli using p1 phage 10. Determination of MIC and LD50 of Streptomycin	Analyse, appreciate, understand the basic concepts of genetic phenomenons that occur in living systems, which enables to understand perspectives of DNA technology that benefits the mankind.
Paper Title: An Name of Teach Program: BSc	nnual pract er: Dr. Shiva ГҮ Subj	ical Based on XIV and XVIa C. AithalDepartment: MICROBIOLOGYect: MicrobiologyCourse Code: Practical Paper Number:	XVII
PRĂCTICAL XVII	Practical	 1.Estimation of reducing sugar by Sumner's method. 2. Estimation of Amino acids by Rosen's method 3. Study of enzymes (Lecithinase, Gelatinase, Urease, Caseinase, Catalase) 4. Fermentative production of Production of amylase 5. Effect of various physicochemical parameters on amylase activity (pH, Temp) 6. Primary screening of antibiotic producers, amylase producers, organic acid producers 7. Production of Penicillin (Surface / submerged) 8. Fermentative production of Wine & and its estimation by Titrable acidity 9. Production of Citric acid (Surface / submerged) & its estimation by Titrable acidity 10. Production of Biofertilizer (Azotobacter) 11. Bioassay of Penicillin 12. Bioassay of therapeutic enzyme glucose oxidase 13. Determination of antimicrobial activity of chemical compound (Phenol) 14. Sterility testing by using Bacillus stearothermophilius / Bacillus subtilis 	This lab course aims to provide the students with analytical and on hands practical skills in Industrial Microbiology and Enzymology techniques.

Specify Course Outcome:

This lab course aims to provide the students with analytical and on hands practical skills. Practicals conducted enhances and develops students to analyse, appreciate, understand the basic concepts of chemical reactions that occur in living systems, which enable them to understand the various perspectives of applied sciences that benefit the mankind.

Specify Program Outcome:

The aim of the undergraduate degree in Microbiology is to make students knowledgeable about the various basic concepts in wide-ranging contexts, which involve the use of knowledge and skills of Microbiology. Their understanding, knowledge and skills in Microbiology needs to be developed through a thorough teaching learning processes in the class, practical skills through the laboratory work, their presentation and articulation skills, exposure to industry and interaction with industry experts, write short research-based projects where they are guided and mentored by the academic and other experts of the subject.

SEC

Paper Title: Molecular Biology Techniques (B)

Name of Teacher: Dr. Shiva C. AithalProgram: BSc TYSubject: Microbiology

Department: MICROBIOLOGY **Course Code: SECMB III B Skill - III**

Unit	Unit Name	Topics	Unit-wise Outcome
Number			
Ι	Enzymes involved	a. Restriction endonucleases type I, II,	To demonstrate the knowledge
	in genetic	and III (Nomenclature and	and understanding of the
	engineering	Classification, activity) b. DNA ligase	principles that govern the
		i. properties and specificities ii.	structures of macromolecules
		Activity and mode of Action a. S	and their participation in
		Nuclease b. DNA Polymerase c.	molecular recombinant DNA
		Phosphatase d. Reverse transcriptase	technology.
II	Hybridization	a. Northern, Southern & colony	Examine the research and
	techniques	hybridization b. Fluorescence in situ	process of interbreeding
		hybridization c. Restriction map and	individual cells from
		mapping technique d. DNA Finger	genetically distinct populations
		printing	to produce a hybrid.
III	Cloning vector	a. Plasmids and their properties	Illustrate how DNA molecule
		(pBR322, PUC18, its derivatives and	in which when a foreign DNA
		construction) b. Bacteriophage $-\lambda qt$,	is integrated has the capability
		10/11 c. Cosmid vectors d. Artificial	to replicate it within itself to
		chromosome vectors – YAC, BACS e.	give birth to numerous clones
		Animal virus derived vector – SV40	of r DNA known as a cloning
			vector.
IV	Cloning	a. Insertion of Foreign DNA into the	To understand and emphasize
	methodologies	host cells – transformation b. Plant	genetic cloning and its use in
		transformation technology i. Basic of	DNA sequencing studies.
		tumor formation ii. Features of Ti and	
		Ri plasmids iii. Mechanism of DNA	
		transfer iv. Use of Ti & Ri as plasmid	
		vector	
PRACTICAL	Practice:	1. Extraction and isolation of DNA 2.	Illustrate and Practice the
		Confirmation of DNA by spectral	significance of rDNA
		studies 3. Agarose gel electrophoresis	techniques in research,
		of DNA OR Industrial training on	medicine, agriculture and
		molecular biology techniques	industry etc.

Specify Course Outcome:

Understand current experimentation in the field of molecular biology. Learn how to read and understand primary publications in molecular biology. Learn how to present molecular biology research data to an audience. Understand basic and advanced molecular biology concepts and techniques. Demonstrate the knowledge and understanding of the principles that govern the structures of macromolecules and their participation in molecular recombinant DNA technology.

Specify Program Outcome:

The aim of the undergraduate degree in Microbiology is to make students knowledgeable about the various basic concepts in wide-ranging contexts, which involve the use of knowledge and skills of Microbiology. Their understanding, knowledge and skills in Microbiology needs to be developed through a thorough teaching learning processes in the class, practical skills through the laboratory work, their presentation and articulation skills, exposure to industry and interaction with industry experts, write short research-based projects where they are guided and mentored by the academic and other experts of the subject.

Paper Title: Bioprocess Technology (A)

Name of Teacher: Dr.	Shiva C. Aithal
Program: BSc SY	Subject: Microbiology

Department: MICROBIOLOGY **Course Code: SECMB IV A**

Unit	Unit Name	Topics	Unit-wise
Number		- · Free	Outcome
I	Agro based	a. Biocompost b. Biofertilizers c.	This course aims
	Bioprocesses involved in	Bioinsecticides d. Biogas e. Biofuel	at developing
	manufacture of		processes that
II	Food and Diary	Bioprocesses involved in production of a.	translate
	bioprocesses	Breed b. Idli, Dhokla, Dosa c. Pickles d.	biological science
	_	Yoghurt (curd) & buttermilk e. Cheese	into biologically
III	Industrial effluent	a. Physical, chemical b. Biological	based
	Treatment	treatment i. Aerobic treatment processes –	manufacturing.
		Trickling filters, biologically aerated filters,	This course
		rotating biological contactors, rotating	prepares for the
		drums, fluidized – bed systems, activated	biological
		sludge processes.	manufacturing
IV	Anaerobic treatment	Anaerobic digestion, anaerobic digestor,	systems of the
	process	anaerobic filters, up – flow anaerobic	future, which
	-	sludge blankets (UASD) Practice: 1.	include eco-
		Ethanol production from Agri waste 2. Idli	friendly treatment
		& Dosa preparation 3. Determination of	of effluent wastes
		COD of industrial effluent 4. Determination	from industries.
		of BOD of industrial effluent	
PRACTICAL	Practice:	1. Ethanol production from Agri waste 2.	This lab course
		Idli & Dosa preparation 3. Determination of	aims to provide
		COD of industrial effluent 4. Determination	the students with
		of BOD of industrial effluent	analytical and on
			hands practical
			skills

Specify Course Outcome:

Bioprocess technology aims at creating process that uses complete living cells or their components (e.g., bacteria, enzymes) to obtain desired products and designing required microbial process which will give more value added products. This course aims at developing processes that translate biological science into biologically based manufacturing. This course prepares for the biological manufacturing systems of the future, which include eco-friendly treatment of effluent wastes from industries.

Specify Program Outcome:

The aim of the undergraduate degree in Microbiology is to make students knowledgeable about the various basic concepts in wide-ranging contexts, which involve the use of knowledge and skills of Microbiology. Their understanding, knowledge and skills in Microbiology needs to be developed through a thorough teaching learning processes in the class, practical skills through the laboratory work, their presentation and articulation skills, exposure to industry and interaction with industry experts, write short research-based projects where they are guided and mentored by the academic and other experts of the subject.